亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since the inception of Bitcoin in 2009, the market of cryptocurrencies has grown beyond initial expectations as daily trades exceed $10 billion. As industries become automated, the need for an automated fraud detector becomes very apparent. Detecting anomalies in real time prevents potential accidents and economic losses. Anomaly detection in multivariate time series data poses a particular challenge because it requires simultaneous consideration of temporal dependencies and relationships between variables. Identifying an anomaly in real time is not an easy task specifically because of the exact anomalistic behavior they observe. Some points may present pointwise global or local anomalistic behavior, while others may be anomalistic due to their frequency or seasonal behavior or due to a change in the trend. In this paper we suggested working on real time series of trades of Ethereum from specific accounts and surveyed a large variety of different algorithms traditional and new. We categorized them according to the strategy and the anomalistic behavior which they search and showed that when bundling them together to different groups, they can prove to be a good real-time detector with an alarm time of no longer than a few seconds and with very high confidence.

相關內容

在數據挖掘中,異常檢測(英語:anomaly detection)對不符合預期模式或數據集中其他項目的項目、事件或觀測值的識別。通常異常項目會轉變成銀行欺詐、結構缺陷、醫療問題、文本錯誤等類型的問題。異常也被稱為離群值、新奇、噪聲、偏差和例外。 特別是在檢測濫用與網絡入侵時,有趣性對象往往不是罕見對象,但卻是超出預料的突發活動。這種模式不遵循通常統計定義中把異常點看作是罕見對象,于是許多異常檢測方法(特別是無監督的方法)將對此類數據失效,除非進行了合適的聚集。相反,聚類分析算法可能可以檢測出這些模式形成的微聚類。 有三大類異常檢測方法。[1] 在假設數據集中大多數實例都是正常的前提下,無監督異常檢測方法能通過尋找與其他數據最不匹配的實例來檢測出未標記測試數據的異常。監督式異常檢測方法需要一個已經被標記“正常”與“異常”的數據集,并涉及到訓練分類器(與許多其他的統計分類問題的關鍵區別是異常檢測的內在不均衡性)。半監督式異常檢測方法根據一個給定的正常訓練數據集創建一個表示正常行為的模型,然后檢測由學習模型生成的測試實例的可能性。

360$^\circ$ video saliency detection is one of the challenging benchmarks for 360$^\circ$ video understanding since non-negligible distortion and discontinuity occur in the projection of any format of 360$^\circ$ videos, and capture-worthy viewpoint in the omnidirectional sphere is ambiguous by nature. We present a new framework named Panoramic Vision Transformer (PAVER). We design the encoder using Vision Transformer with deformable convolution, which enables us not only to plug pretrained models from normal videos into our architecture without additional modules or finetuning but also to perform geometric approximation only once, unlike previous deep CNN-based approaches. Thanks to its powerful encoder, PAVER can learn the saliency from three simple relative relations among local patch features, outperforming state-of-the-art models for the Wild360 benchmark by large margins without supervision or auxiliary information like class activation. We demonstrate the utility of our saliency prediction model with the omnidirectional video quality assessment task in VQA-ODV, where we consistently improve performance without any form of supervision, including head movement.

Recently, high dimensional vector auto-regressive models (VAR), have attracted a lot of interest, due to novel applications in the health, engineering and social sciences. The presence of temporal dependence poses additional challenges to the theory of penalized estimation techniques widely used in the analysis of their iid counterparts. However, recent work (e.g., [Basu and Michailidis, 2015, Kock and Callot, 2015]) has established optimal consistency of $\ell_1$-LASSO regularized estimates applied to models involving high dimensional stable, Gaussian processes. The only price paid for temporal dependence is an extra multiplicative factor that equals 1 for independent and identically distributed (iid) data. Further, [Wong et al., 2020] extended these results to heavy tailed VARs that exhibit "$\beta$-mixing" dependence, but the rates rates are sub-optimal, while the extra factor is intractable. This paper improves these results in two important directions: (i) We establish optimal consistency rates and corresponding finite sample bounds for the underlying model parameters that match those for iid data, modulo a price for temporal dependence, that is easy to interpret and equals 1 for iid data. (ii) We incorporate more general penalties in estimation (which are not decomposable unlike the $\ell_1$ norm) to induce general sparsity patterns. The key technical tool employed is a novel, easy-to-use concentration bound for heavy tailed linear processes, that do not rely on "mixing" notions and give tighter bounds.

Recent studies have shown that autoencoder-based models can achieve superior performance on anomaly detection tasks due to their excellent ability to fit complex data in an unsupervised manner. In this work, we propose a novel autoencoder-based model, named StackVAE-G that can significantly bring the efficiency and interpretability to multivariate time series anomaly detection. Specifically, we utilize the similarities across the time series channels by the stacking block-wise reconstruction with a weight-sharing scheme to reduce the size of learned models and also relieve the overfitting to unknown noises in the training data. We also leverage a graph learning module to learn a sparse adjacency matrix to explicitly capture the stable interrelation structure among multiple time series channels for the interpretable pattern reconstruction of interrelated channels. Combining these two modules, we introduce the stacking block-wise VAE (variational autoencoder) with GNN (graph neural network) model for multivariate time series anomaly detection. We conduct extensive experiments on three commonly used public datasets, showing that our model achieves comparable (even better) performance with the state-of-the-art modelsand meanwhile requires much less computation and memory cost. Furthermore, we demonstrate that the adjacency matrix learned by our model accurately captures the interrelation among multiple channels, and can provide valuable information for failure diagnosis applications.

\cite{rohe2016co} proposed Stochastic co-Blockmodel (ScBM) as a tool for detecting community structure of binary directed graph data in network studies. However, ScBM completely ignores node weight, and is unable to explain the block structure of directed weighted network which appears in various areas, such as biology, sociology, physiology and computer science. Here, to model directed weighted network, we introduce a Directed Distribution-Free model by releasing ScBM's distribution restriction. We also build an extension of the proposed model by considering variation of node degree. Our models do not require a specific distribution on generating elements of adjacency matrix but only a block structure on the expected adjacency matrix. Spectral algorithms with theoretical guarantee on consistent estimation of node label are presented to identify communities. Our proposed methods are illustrated by simulated and empirical examples.

The quality of generalized linear models (GLMs), frequently used by insurance companies, depends on the choice of interacting variables. The search for interactions is time-consuming, especially for data sets with a large number of variables, depends much on expert judgement of actuaries, and often relies on visual performance indicators. Therefore, we present an approach to automating the process of finding interactions that should be added to GLMs to improve their predictive power. Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values. In numerical studies, we provide the results of our approach on different data sets: open-source data, artificial data, and proprietary data.

Inferring the timing and amplitude of perturbations in epidemiological systems from their stochastically spread low-resolution outcomes is as relevant as challenging. It is a requirement for current approaches to overcome the need to know the details of the perturbations to proceed with the analyses. However, the general problem of connecting epidemiological curves with the underlying incidence lacks the highly effective methodology present in other inverse problems, such as super-resolution and dehazing from computer vision. Here, we develop an unsupervised physics-informed convolutional neural network approach in reverse to connect death records with incidence that allows the identification of regime changes at single-day resolution. Applied to COVID-19 data with proper regularization and model-selection criteria, the approach can identify the implementation and removal of lockdowns and other nonpharmaceutical interventions with 0.93-day accuracy over the time span of a year.

Recent advances in artificial intelligence promote a wide range of computer vision applications in many different domains. Digital cameras, acting as human eyes, can perceive fundamental object properties, such as shapes and colors, and can be further used for conducting high-level tasks, such as image classification, and object detections. Human perceptions have been widely recognized as the ground truth for training and evaluating computer vision models. However, in some cases, humans can be deceived by what they have seen. Well-functioned human vision relies on stable external lighting while unnatural illumination would influence human perception of essential characteristics of goods. To evaluate the illumination effects on human and computer perceptions, the group presents a novel dataset, the Food Vision Dataset (FVD), to create an evaluation benchmark to quantify illumination effects, and to push forward developments of illumination estimation methods for fair and reliable consumer acceptability prediction from food appearances. FVD consists of 675 images captured under 3 different power and 5 different temperature settings every alternate day for five such days.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

北京阿比特科技有限公司