The Metropolis process (MP) and Simulated Annealing (SA) are stochastic local search heuristics that are often used in solving combinatorial optimization problems. Despite significant interest, there are very few theoretical results regarding the quality of approximation obtained by MP and SA (with polynomially many iterations) for NP-hard optimization problems. We provide rigorous lower bounds for MP and SA with respect to the classical maximum independent set problem when the algorithms are initialized from the empty set. We establish the existence of a family of graphs for which both MP and SA fail to find approximate solutions in polynomial time. More specifically, we show that for any $\varepsilon \in (0,1)$ there are $n$-vertex graphs for which the probability SA (when limited to polynomially many iterations) will approximate the optimal solution within ratio $\Omega\left(\frac{1}{n^{1-\varepsilon}}\right)$ is exponentially small. Our lower bounds extend to graphs of constant average degree $d$, illustrating the failure of MP to achieve an approximation ratio of $\Omega\left(\frac{\log (d)}{d}\right)$ in polynomial time. In some cases, our impossibility results also go beyond Simulated Annealing and apply even when the temperature is chosen adaptively. Finally, we prove time lower bounds when the inputs to these algorithms are bipartite graphs, and even trees, which are known to admit polynomial-time algorithms for the independent set problem.
Modern SAT and SMT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF) so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or Plaisted and Greenbaum transformations. When passing from solving to enumeration, however, the capability of producing partial satisfying assignments that are as small as possible becomes crucial, which raises the question of whether such CNF encodings are also effective for enumeration. In this paper, we investigate both theoretically and empirically the effectiveness of CNF conversions for SAT and SMT enumeration. On the negative side, we show that: (i) Tseitin transformation prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness of enumeration; (ii) Plaisted and Greenbaum transformation overcomes this problem only in part. On the positive side, we prove theoretically and we show empirically that combining Plaisted and Greenbaum transformation with NNF preprocessing upfront -- which is typically not used in solving -- can fully overcome the problem and can drastically reduce both the number of partial assignments and the execution time.
The Sibson and Arimoto capacity, which are based on the Sibson and Arimoto mutual information (MI) of order {\alpha}, respectively, are well-known generalizations of the channel capacity C. In this study, we derive novel alternating optimization algorithms for computing these capacities by providing new variational characterizations of the Sibson MI and Arimoto MI. Moreover, we prove that all iterative algorithms for computing these capacities are equivalent under appropriate conditions imposed on their initial distributions.
Gender-neutral translation (GNT) that avoids biased and undue binary assumptions is a pivotal challenge for the creation of more inclusive translation technologies. Advancements for this task in Machine Translation (MT), however, are hindered by the lack of dedicated parallel data, which are necessary to adapt MT systems to satisfy neutral constraints. For such a scenario, large language models offer hitherto unforeseen possibilities, as they come with the distinct advantage of being versatile in various (sub)tasks when provided with explicit instructions. In this paper, we explore this potential to automate GNT by comparing MT with the popular GPT-4 model. Through extensive manual analyses, our study empirically reveals the inherent limitations of current MT systems in generating GNTs and provides valuable insights into the potential and challenges associated with prompting for neutrality.
Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.
The perception that the convergence of biological engineering and artificial intelligence (AI) could enable increased biorisk has recently drawn attention to the governance of biotechnology and artificial intelligence. The 2023 Executive Order, Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, requires an assessment of how artificial intelligence can increase biorisk. Within this perspective, we present a simplistic framework for evaluating biorisk and demonstrate how this framework falls short in achieving actionable outcomes for a biorisk manager. We then suggest a potential path forward that builds upon existing risk characterization work and justify why characterization efforts of AI-enabled tools for engineering biology is needed.
Although ubiquitous in modern vehicles, Controller Area Networks (CANs) lack basic security properties and are easily exploitable. A rapidly growing field of CAN security research has emerged that seeks to detect intrusions on CANs. Producing vehicular CAN data with a variety of intrusions is out of reach for most researchers as it requires expensive assets and expertise. To assist researchers, we present the first comprehensive guide to the existing open CAN intrusion datasets, including a quality analysis of each dataset and an enumeration of each's benefits, drawbacks, and suggested use case. Current public CAN IDS datasets are limited to real fabrication (simple message injection) attacks and simulated attacks often in synthetic data, which lack fidelity. In general, the physical effects of attacks on the vehicle are not verified in the available datasets. Only one dataset provides signal-translated data but not a corresponding raw binary version. Overall, the available data pigeon-holes CAN IDS works into testing on limited, often inappropriate data (usually with attacks that are too easily detectable to truly test the method), and this lack data has stymied comparability and reproducibility of results. As our primary contribution, we present the ROAD (Real ORNL Automotive Dynamometer) CAN Intrusion Dataset, consisting of over 3.5 hours of one vehicle's CAN data. ROAD contains ambient data recorded during a diverse set of activities, and attacks of increasing stealth with multiple variants and instances of real fuzzing, fabrication, and unique advanced attacks, as well as simulated masquerade attacks. To facilitate benchmarking CAN IDS methods that require signal-translated inputs, we also provide the signal time series format for many of the CAN captures. Our contributions aim to facilitate appropriate benchmarking and needed comparability in the CAN IDS field.
The self-rationalising capabilities of LLMs are appealing because the generated explanations can give insights into the plausibility of the predictions. However, how faithful the explanations are to the predictions is questionable, raising the need to explore the patterns behind them further. To this end, we propose a hypothesis-driven statistical framework. We use a Bayesian network to implement a hypothesis about how a task (in our example, natural language inference) is solved, and its internal states are translated into natural language with templates. Those explanations are then compared to LLM-generated free-text explanations using automatic and human evaluations. This allows us to judge how similar the LLM's and the Bayesian network's decision processes are. We demonstrate the usage of our framework with an example hypothesis and two realisations in Bayesian networks. The resulting models do not exhibit a strong similarity to GPT-3.5. We discuss the implications of this as well as the framework's potential to approximate LLM decisions better in future work.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.