亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approx. 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers' abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes.

相關內容

計算機科學(Computer Science, CS)是系統性研究信息與計算的理論基礎以及它們在計算機系統中如何實現與應用的實用技術的學科。 它通常被形容為對那些創造、描述以及轉換信息的算法處理的系統研究。計算機科學包含很多分支領域;其中一些,比如計算機圖形學強調特定結果的計算,而另外一些,比如計算復雜性理論是學習計算問題的性質。還有一些領域專注于挑戰怎樣實現計算。比如程序設計語言理論學習描述計算的方法,而程序設計是應用特定的程序設計語言解決特定的計算問題,人機交互則是專注于挑戰怎樣使計算機和計算變得有用、可用,以及隨時隨地為 所用。 現代計算機科學( Computer Science)包含理論計算機科學和應用計算機科學兩大分支。

Numerous self-supervised learning (SSL) models for speech have been proposed for pre-training models of speech representations, and recent SSL models are very successful in diverse downstream tasks. To understand such utilities, previous works probe representations of speech models to reveal which & how speech related information is encoded in the learned representations. While encoding properties have been extensively explored from the perspective of acoustics, phonetics, and semantics, the physical grounding by speech production has not yet received full attention. To bridge this gap, we conduct a comprehensive analysis to link speech representations to articulatory trajectories measured by electromagnetic articulography (EMA). Our analysis is based on a linear probing approach where we measure articulatory score as an average correlation of linear mapping to EMA. We analyze a set of SSL models selected from the leaderboard of the SU- PERB benchmark and perform further detailed analyses on two major models, Wav2Vec 2.0 and HuBERT. Surprisingly, representations from the recent speech SSL models are highly correlated with EMA traces (best: r = 0.81), and only 5 minutes were sufficient to train a linear model with high performance (r = 0.77). Our findings suggest that SSL models learn to closely align with continuous articulations and provide a novel insight into speech SSL.

Recent years have witnessed remarkable progress in artificial intelligence (AI) thanks to refined deep network structures, powerful computing devices, and large-scale labeled datasets. However, researchers have mainly invested in the optimization of models and computational devices, leading to the fact that good models and powerful computing devices are currently readily available, while datasets are still stuck at the initial stage of large-scale but low quality. Data becomes a major obstacle to AI development. Taking note of this, we dig deeper and find that there has been some but unstructured work on data optimization. They focus on various problems in datasets and attempt to improve dataset quality by optimizing its structure to facilitate AI development. In this paper, we present the first review of recent advances in this area. First, we summarize and analyze various problems that exist in large-scale computer vision datasets. We then define data optimization and classify data optimization algorithms into three directions according to the optimization form: data sampling, data subset selection, and active learning. Next, we organize these data optimization works according to data problems addressed, and provide a systematic and comparative description. Finally, we summarize the existing literature and propose some potential future research topics.

This paper reviews various Evolutionary Approaches applied to the domain of Evolutionary Robotics with the intention of resolving difficult problems in the areas of robotic design and control. Evolutionary Robotics is a fast-growing field that has attracted substantial research attention in recent years. The paper thus collates recent findings along with some anticipated applications. The reviewed literature is organized systematically to give a categorical overview of recent developments and is presented in tabulated form for quick reference. We discuss the outstanding potentialities and challenges that exist in robotics from an ER perspective, with the belief that these will be have the capacity to be addressed in the near future via the application of evolutionary approaches. The primary objective of this study is to explore the applicability of Evolutionary Approaches in robotic application development. We believe that this study will enable the researchers to utilize Evolutionary Approaches to solve complex outstanding problems in robotics.

When robots enter everyday human environments, they need to understand their tasks and how they should perform those tasks. To encode these, reward functions, which specify the objective of a robot, are employed. However, designing reward functions can be extremely challenging for complex tasks and environments. A promising approach is to learn reward functions from humans. Recently, several robot learning works embrace this approach and leverage human demonstrations to learn the reward functions. Known as inverse reinforcement learning, this approach relies on a fundamental assumption: humans can provide near-optimal demonstrations to the robot. Unfortunately, this is rarely the case: human demonstrations to the robot are often suboptimal due to various reasons, e.g., difficulty of teleoperation, robot having high degrees of freedom, or humans' cognitive limitations. This thesis is an attempt towards learning reward functions from human users by using other, more reliable data modalities. Specifically, we study how reward functions can be learned using comparative feedback, in which the human user compares multiple robot trajectories instead of (or in addition to) providing demonstrations. To this end, we first propose various forms of comparative feedback, e.g., pairwise comparisons, best-of-many choices, rankings, scaled comparisons; and describe how a robot can use these various forms of human feedback to infer a reward function, which may be parametric or non-parametric. Next, we propose active learning techniques to enable the robot to ask for comparison feedback that optimizes for the expected information that will be gained from that user feedback. Finally, we demonstrate the applicability of our methods in a wide variety of domains, ranging from autonomous driving simulations to home robotics, from standard reinforcement learning benchmarks to lower-body exoskeletons.

The prospect of using autonomous robots to enhance the capabilities of physicians and enable novel procedures has led to considerable efforts in developing medical robots and incorporating autonomous capabilities. Motion planning is a core component for any such system working in an environment that demands near perfect levels of safety, reliability, and precision. Despite the extensive and promising work that has gone into developing motion planners for medical robots, a standardized and clinically-meaningful way to compare existing algorithms and evaluate novel planners and robots is not well established. We present the Medical Motion Planning Dataset (Med-MPD), a publicly-available dataset of real clinical scenarios in various organs for the purpose of evaluating motion planners for minimally-invasive medical robots. Our goal is that this dataset serve as a first step towards creating a larger robust medical motion planning benchmark framework, advance research into medical motion planners, and lift some of the burden of generating medical evaluation data.

Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.

Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.

Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.

北京阿比特科技有限公司