亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Audio-Visual Event Localization (AVEL) is the task of temporally localizing and classifying \emph{audio-visual events}, i.e., events simultaneously visible and audible in a video. In this paper, we solve AVEL in a weakly-supervised setting, where only video-level event labels (their presence/absence, but not their locations in time) are available as supervision for training. Our idea is to use a base model to estimate labels on the training data at a finer temporal resolution than at the video level and re-train the model with these labels. I.e., we determine the subset of labels for each \emph{slice} of frames in a training video by (i) replacing the frames outside the slice with those from a second video having no overlap in video-level labels, and (ii) feeding this synthetic video into the base model to extract labels for just the slice in question. To handle the out-of-distribution nature of our synthetic videos, we propose an auxiliary objective for the base model that induces more reliable predictions of the localized event labels as desired. Our three-stage pipeline outperforms several existing AVEL methods with no architectural changes and improves performance on a related weakly-supervised task as well.

相關內容

Referring video object segmentation (RVOS), as a supervised learning task, relies on sufficient annotated data for a given scene. However, in more realistic scenarios, only minimal annotations are available for a new scene, which poses significant challenges to existing RVOS methods. With this in mind, we propose a simple yet effective model with a newly designed cross-modal affinity (CMA) module based on a Transformer architecture. The CMA module builds multimodal affinity with a few samples, thus quickly learning new semantic information, and enabling the model to adapt to different scenarios. Since the proposed method targets limited samples for new scenes, we generalize the problem as - few-shot referring video object segmentation (FS-RVOS). To foster research in this direction, we build up a new FS-RVOS benchmark based on currently available datasets. The benchmark covers a wide range and includes multiple situations, which can maximally simulate real-world scenarios. Extensive experiments show that our model adapts well to different scenarios with only a few samples, reaching state-of-the-art performance on the benchmark. On Mini-Ref-YouTube-VOS, our model achieves an average performance of 53.1 J and 54.8 F, which are 10% better than the baselines. Furthermore, we show impressive results of 77.7 J and 74.8 F on Mini-Ref-SAIL-VOS, which are significantly better than the baselines. Code is publicly available at //github.com/hengliusky/Few_shot_RVOS.

Accel-Sim is a widely used computer architecture simulator that models the behavior of modern NVIDIA GPUs in great detail. However, although Accel-Sim and the underlying GPGPU-Sim model many of the features of real GPUs, thus far it has not been able to track statistics separately per stream. Instead, Accel-Sim combines statistics (e.g., cycles and cache hits/misses) across all simultaneously running streams. This can prevent users from properly identifying the behavior of specific kernels and streams and potentially lead to incorrect conclusions. Thus, in this work we extend Accel-Sim's and GPGPU-Sim's statistic tracking support to track per-stream statistics. To validate this support, we designed a series of multi-stream microbenchmarks and checked their reported per-kernel, per-stream counts.

We propose the geometry-informed neural operator (GINO), a highly efficient approach to learning the solution operator of large-scale partial differential equations with varying geometries. GINO uses a signed distance function and point-cloud representations of the input shape and neural operators based on graph and Fourier architectures to learn the solution operator. The graph neural operator handles irregular grids and transforms them into and from regular latent grids on which Fourier neural operator can be efficiently applied. GINO is discretization-convergent, meaning the trained model can be applied to arbitrary discretization of the continuous domain and it converges to the continuum operator as the discretization is refined. To empirically validate the performance of our method on large-scale simulation, we generate the industry-standard aerodynamics dataset of 3D vehicle geometries with Reynolds numbers as high as five million. For this large-scale 3D fluid simulation, numerical methods are expensive to compute surface pressure. We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points. The cost-accuracy experiments show a $26,000 \times$ speed-up compared to optimized GPU-based computational fluid dynamics (CFD) simulators on computing the drag coefficient. When tested on new combinations of geometries and boundary conditions (inlet velocities), GINO obtains a one-fourth reduction in error rate compared to deep neural network approaches.

Delay alignment modulation (DAM) is a novel wideband transmission technique for mmWave massive MIMO systems, which exploits the high spatial resolution and multi-path sparsity to mitigate ISI, without relying on channel equalization or multi-carrier transmission. In particular, DAM leverages the delay pre-compensation and path-based beamforming to effectively align the multi-path components, thus achieving the constructive multi-path combination for eliminating the ISI while preserving the multi-path power gain. Different from the existing works only considering single-user DAM, this paper investigates the DAM technique for multi-user mmWave massive MIMO communication. First, we consider the asymptotic regime when the number of antennas Mt at BS is sufficiently large. It is shown that by employing the simple delay pre-compensation and per-path-based MRT beamforming, the single-carrier DAM is able to perfectly eliminate both ISI and IUI. Next, we consider the general scenario with Mt being finite. In this scenario, we characterize the achievable rate region of the multi-user DAM system by finding its Pareto boundary. Specifically, we formulate a rate-profile-constrained sum rate maximization problem by optimizing the per-path-based beamforming. Furthermore, we present three low-complexity per-path-based beamforming strategies based on the MRT, zero-forcing, and regularized zero-forcing principles, respectively, based on which the achievable sum rates are studied. Finally, we provide simulation results to demonstrate the performance of our proposed strategies as compared to two benchmark schemes based on the strongest-path-based beamforming and the prevalent OFDM, respectively. It is shown that DAM achieves higher spectral efficiency and/or lower peak-to-average-ratio, for systems with high spatial resolution and multi-path diversity.

Models of crowdsourcing and human computation often assume that individuals independently carry out small, modular tasks. However, while these models have successfully shown how crowds can accomplish significant objectives, they can inadvertently advance a less than human view of crowd workers and fail to capture the unique human capacity for complex collaborative work. We present a model centered on interdependencies -- a phenomenon well understood to be at the core of collaboration -- that allows one to formally reason about diverse challenges to complex collaboration. Our model represents tasks as an interdependent collection of subtasks, formalized as a task graph. We use it to explain challenges to scaling complex collaborative work, underscore the importance of expert workers, reveal critical factors for learning on the job, and explore the relationship between coordination intensity and occupational wages. Using data from O*NET and the Bureau of Labor Statistics, we introduce an index of occupational coordination intensity to validate our theoretical predictions. We present preliminary evidence that occupations with greater coordination intensity are less exposed to displacement by AI, and discuss opportunities for models that emphasize the collaborative capacities of human workers, bridge models of crowd work and traditional work, and promote AI in roles augmenting human collaboration.

Vision-language representation learning largely benefits from image-text alignment through contrastive losses (e.g., InfoNCE loss). The success of this alignment strategy is attributed to its capability in maximizing the mutual information (MI) between an image and its matched text. However, simply performing cross-modal alignment (CMA) ignores data potential within each modality, which may result in degraded representations. For instance, although CMA-based models are able to map image-text pairs close together in the embedding space, they fail to ensure that similar inputs from the same modality stay close by. This problem can get even worse when the pre-training data is noisy. In this paper, we propose triple contrastive learning (TCL) for vision-language pre-training by leveraging both cross-modal and intra-modal self-supervision. Besides CMA, TCL introduces an intra-modal contrastive objective to provide complementary benefits in representation learning. To take advantage of localized and structural information from image and text input, TCL further maximizes the average MI between local regions of image/text and their global summary. To the best of our knowledge, ours is the first work that takes into account local structure information for multi-modality representation learning. Experimental evaluations show that our approach is competitive and achieve the new state of the art on various common down-stream vision-language tasks such as image-text retrieval and visual question answering.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.

北京阿比特科技有限公司