亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a new presentation of the main result of Arunachalam, Bri\"et and Palazuelos (SICOMP'19) and show that quantum query algorithms are characterized by a new class of polynomials which we call Fourier completely bounded polynomials. We conjecture that all such polynomials have an influential variable. This conjecture is weaker than the famous Aaronson-Ambainis (AA) conjecture (Theory of Computing'14), but has the same implications for classical simulation of quantum query algorithms. We prove a new case of the AA conjecture by showing that it holds for homogeneous Fourier completely bounded polynomials. This implies that if the output of $d$-query quantum algorithm is a homogeneous polynomial $p$ of degree $2d$, then it has a variable with influence at least $Var[p]^2$. In addition, we give an alternative proof of the results of Bansal, Sinha and de Wolf (CCC'22 and QIP'23) showing that block-multilinear completely bounded polynomials have influential variables. Our proof is simpler, obtains better constants and does not use randomness.

相關內容

We address the problem of learning Deep Learning Radiomics (DLR) that are not redundant with Hand-Crafted Radiomics (HCR). To do so, we extract DLR features using a VAE while enforcing their independence with HCR features by minimizing their mutual information. The resulting DLR features can be combined with hand-crafted ones and leveraged by a classifier to predict early markers of cancer. We illustrate our method on four early markers of pancreatic cancer and validate it on a large independent test set. Our results highlight the value of combining non-redundant DLR and HCR features, as evidenced by an improvement in the Area Under the Curve compared to baseline methods that do not address redundancy or solely rely on HCR features.

Simple drawings are drawings of graphs in which any two edges intersect at most once (either at a common endpoint or a proper crossing), and no edge intersects itself. We analyze several characteristics of simple drawings of complete multipartite graphs: which pairs of edges cross, in which order they cross, and the cyclic order around vertices and crossings, respectively. We consider all possible combinations of how two drawings can share some characteristics and determine which other characteristics they imply and which they do not imply. Our main results are that for simple drawings of complete multipartite graphs, the orders in which edges cross determine all other considered characteristics. Further, if all partition classes have at least three vertices, then the pairs of edges that cross determine the rotation system and the rotation around the crossings determine the extended rotation system. We also show that most other implications -- including the ones that hold for complete graphs -- do not hold for complete multipartite graphs. Using this analysis, we establish which types of isomorphisms are meaningful for simple drawings of complete multipartite graphs.

With the success of Large Language Models (LLMs), a surge of Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning. The tuning recipe substantially deviates from the common contrastive vision-language learning. However, the performance of GVLMs in multimodal compositional reasoning remains largely unexplored, as existing evaluation metrics and benchmarks focus predominantly on assessing contrastive models like CLIP. In this paper, we examine the potential evaluation metrics to assess the GVLMs and hypothesize generative score methods are suitable for evaluating compositionality. In addition, current benchmarks tend to prioritize syntactic correctness over semantics. The presence of morphological bias in these benchmarks can be exploited by GVLMs, leading to ineffective evaluations. To combat this, we define a MorphoBias Score to quantify the morphological bias and propose a novel LLM-based strategy to calibrate the bias. Moreover, a challenging task is added to evaluate the robustness of GVLMs against inherent inclination toward syntactic correctness. We include the calibrated dataset and the task into a new benchmark, namely MOrphologicall De-biased Benchmark (MODE). Our study provides the first unbiased benchmark for the compositionality of GVLMs, facilitating future research in this direction. We will release our code and datasets.

Bayesian Experimental Design (BED), which aims to find the optimal experimental conditions for Bayesian inference, is usually posed as to optimize the expected information gain (EIG). The gradient information is often needed for efficient EIG optimization, and as a result the ability to estimate the gradient of EIG is essential for BED problems. The primary goal of this work is to develop methods for estimating the gradient of EIG, which, combined with the stochastic gradient descent algorithms, result in efficient optimization of EIG. Specifically, we first introduce a posterior expected representation of the EIG gradient with respect to the design variables. Based on this, we propose two methods for estimating the EIG gradient, UEEG-MCMC that leverages posterior samples generated through Markov Chain Monte Carlo (MCMC) to estimate the EIG gradient, and BEEG-AP that focuses on achieving high simulation efficiency by repeatedly using parameter samples. Theoretical analysis and numerical studies illustrate that UEEG-MCMC is robust agains the actual EIG value, while BEEG-AP is more efficient when the EIG value to be optimized is small. Moreover, both methods show superior performance compared to several popular benchmarks in our numerical experiments.

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for beyond fifth-generation (B5G) and 6G networks conceived from metamaterials that smartly tunes the signal reflections via a large number of low-cost passive reflecting elements. However, the IRS-assisted communication model and the optimization of available resources needs to be improved further for more efficient communications. This paper investigates the enhancement of received power at the user end in an IRS assisted wireless communication by jointly optimizing the phase shifts at the IRS elements and its location. Employing the conventional Friss transmission model, the relationship between the transmitted power and reflected power is established. The expression of received power incorporates the free space loss, reflection loss factor, physical dimension of the IRS panel, and radiation pattern of the transmit signal. Also, the expression of reflection coefficient of IRS panel is obtained by exploiting the existing data of radar communications. Initially exploring a single IRS element within a two-ray reflection model, we extend it to a more complex multi-ray reflection model with multiple IRS elements in 3D Cartesian space. The received power expression is derived in a more tractable form, then, it is maximized by jointly optimizing the underlying underlying variables, the IRS location and the phase shifts. To realize the joint optimization of underlying variables, first, the phase shifts of the IRS elements are optimized to achieve constructive interference of received signal components at the user. Subsequently, the location of the IRS is optimized at the obtained optimal phase shifts. Numerical insights and performance comparison reveal that joint optimization leads to a substantial 37% enhancement in received power compared to the closest competitive benchmark scheme.

Multidimensional constellation shaping of up to 32 dimensions with different spectral efficiencies are compared through AWGN and fiber-optic simulations. The results show that no constellation is universal and the balance of required and effective SNRs should be jointly considered for the specific optical transmission scenario.

End-to-end driving systems have recently made rapid progress, in particular on CARLA. Independent of their major contribution, they introduce changes to minor system components. Consequently, the source of improvements is unclear. We identify two biases that recur in nearly all state-of-the-art methods and are critical for the observed progress on CARLA: (1) lateral recovery via a strong inductive bias towards target point following, and (2) longitudinal averaging of multimodal waypoint predictions for slowing down. We investigate the drawbacks of these biases and identify principled alternatives. By incorporating our insights, we develop TF++, a simple end-to-end method that ranks first on the Longest6 and LAV benchmarks, gaining 11 driving score over the best prior work on Longest6.

We study the computational complexity of fairly allocating a set of indivisible items under externalities. In this recently-proposed setting, in addition to the utility the agent gets from their bundle, they also receive utility from items allocated to other agents. We focus on the extended definitions of envy-freeness up to one item (EF1) and of envy-freeness up to any item (EFX), and we provide the landscape of their complexity for several different scenarios. We prove that it is NP-complete to decide whether there exists an EFX allocation, even when there are only three agents, or even when there are only six different values for the items. We complement these negative results by showing that when both the number of agents and the number of different values for items are bounded by a parameter the problem becomes fixed-parameter tractable. Furthermore, we prove that two-valued and binary-valued instances are equivalent and that EFX and EF1 allocations coincide for this class of instances. Finally, motivated from real-life scenarios, we focus on a class of structured valuation functions, which we term agent/item-correlated. We prove their equivalence to the ``standard'' setting without externalities. Therefore, all previous results for EF1 and EFX apply immediately for these valuations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司