亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the vastly different energy consumption between up-slope and down-slope, a path with the shortest length on a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicle, realizing a good trade-off between distance and energy consumption in 2.5D path planning is significantly meaningful. In this paper, we propose a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP). The DMOP can efficiently find the desired path in three steps: (1) Transform the high-resolution 2.5D map into a small-size map. (2) Use a trained deep Q network (DQN) to find the desired path on the small-size map. (3) Build the planned path to the original high-resolution map using a path-enhanced method. In addition, the hybrid exploration strategy and reward shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, and border. Simulation results show that the proposed method can finish the multi-objective 2.5D path planning task with significantly high efficiency. With similar planned paths, the speed of the proposed method is more than 100 times faster than that of the A* method and 30 times faster than that of H3DM method. Also, simulation proves that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks.

相關內容

Indoor magnetic fields are a combination of Earth's magnetic field and disruptions induced by ferromagnetic objects, such as steel structural components in buildings. As a result of these disruptions, pervasive in indoor spaces, magnetic field data is often omitted from navigation algorithms in indoor environments. This paper leverages the spatially-varying disruptions to Earth's magnetic field to extract positional information for use in indoor navigation algorithms. The algorithm uses a rate gyro and an array of four magnetometers to estimate the robot's pose. Additionally, the magnetometer array is used to compute attitude-invariant measurements associated with the magnetic field and its gradient. These measurements are used to detect loop closure points. Experimental results indicate that the proposed approach can estimate the pose of a ground robot in an indoor environment within meter accuracy.

Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment. To overcome these issues, we study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets. We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics, leveraging access to a generative model (i.e., simulator). We further demonstrate the statistical sample complexity of the proposed method for different uncertainty sets. These complexity bounds are independent of the number of states and extend beyond linear dynamics, ensuring the effectiveness of our approach in identifying near-optimal distributionally-robust policies. The proposed method can be further combined with other model-free distributionally robust reinforcement learning methods to obtain a near-optimal robust policy. Experimental results demonstrate the robustness of our algorithm to distributional shifts and its superior performance in terms of the number of samples needed.

As the fusion of automotive industry and metaverse, vehicular metaverses establish a bridge between the physical space and virtual space, providing intelligent transportation services through the integration of various technologies, such as extended reality and real-time rendering technologies, to offer immersive metaverse services for Vehicular Metaverse Users (VMUs). In vehicular metaverses, VMUs update vehicle twins (VTs) deployed in RoadSide Units (RSUs) to obtain metaverse services. However, due to the mobility of vehicles and the limited service coverage of RSUs, VT migration is necessary to ensure continuous immersive experiences for VMUs. This process requires RSUs to contribute resources for enabling efficient migration, which leads to a resource trading problem between RSUs and VMUs. Moreover, a single RSU cannot support large-scale VT migration. To this end, we propose a blockchain-assisted game approach framework for reliable VT migration in vehicular metaverses. Based on the subject logic model, we first calculate the reputation values of RSUs considering the freshness of interaction between RSUs and VMUs. Then, a coalition game based on the reputation values of RSUs is formulated, and RSU coalitions are formed to jointly provide bandwidth resources for reliable and large-scale VT migration. Subsequently, the RSU coalition with the highest utility is selected. Finally, to incentivize VMUs to participate in VT migration, we propose a Stackelberg model between the selected coalition and VMUs. Numerical results demonstrate the reliability and effectiveness of the proposed schemes.

Lately, the energy communities have gained a lot of attention as they have the potential to significantly contribute to the resilience and flexibility of the energy system, facilitating widespread integration of intermittent renewable energy sources. Within these communities the prosumers can engage in peer-to-peer trading, fostering local collaborations and increasing awareness about energy usage and flexible consumption. However, even under these favorable conditions, prosumer engagement levels remain low, requiring trading mechanisms that are aligned with their social values and expectations. In this paper, we introduce an innovative hedonic game coordination and cooperation model for P2P energy trading among prosumers which considers the social relationships within an energy community to create energy coalitions and facilitate energy transactions among them. We defined a heuristic that optimizes the prosumers coalitions, considering their social and energy price preferences and balancing the energy demand and supply within the community. We integrated the proposed hedonic game model into a state-of-the-art blockchain-based P2P energy flexibility market and evaluated its performance within an energy community of prosumers. The evaluation results on a blockchain-based P2P energy flexibility market show the effectiveness in considering social factors when creating coalitions, increasing the total amount of energy transacted in a market session by 5% compared with other game theory-based solutions. Finally, it shows the importance of the social dimensions of P2P energy transactions, the positive social dynamics in the energy community increasing the amount of energy transacted by more than 10% while contributing to a more balanced energy demand and supply within the community.

Since its invention HyperLogLog has become the standard algorithm for approximate distinct counting. Due to its space efficiency and suitability for distributed systems, it is widely used and also implemented in numerous databases. This work presents UltraLogLog, which shares the same practical properties as HyperLogLog. It is commutative, idempotent, mergeable, and has a fast guaranteed constant-time insert operation. At the same time, it requires 28% less space to encode the same amount of distinct count information, which can be extracted using the maximum likelihood method. Alternatively, a simpler and faster estimator is proposed, which still achieves a space reduction of 24%, but at an estimation speed comparable to that of HyperLogLog. In a non-distributed setting where martingale estimation can be used, UltraLogLog is able to reduce space by 17%. Moreover, its smaller entropy and its 8-bit registers lead to better compaction when using standard compression algorithms. All this is verified by experimental results that are in perfect agreement with the theoretical analysis which also outlines potential for even more space-efficient data structures. A production-ready Java implementation of UltraLogLog has been released as part of the open-source Hash4j library.

Mixture-of-Experts models are commonly used when there exist distinct clusters with different relationships between the independent and dependent variables. Fitting such models for large datasets, however, is computationally virtually impossible. An attractive alternative is to use a subdata selected by ``maximizing" the Fisher information matrix. A major challenge is that no closed-form expression for the Fisher information matrix is available for such models. Focusing on clusterwise linear regression models, a subclass of MoE models, we develop a framework that overcomes this challenge. We prove that the proposed subdata selection approach is asymptotically optimal, i.e., no other method is statistically more efficient than the proposed one when the full data size is large.

Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to construct a hypercolumn representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.

Determining, understanding, and predicting the so-called structure-property relation is an important task in many scientific disciplines, such as chemistry, biology, meteorology, physics, engineering, and materials science. Structure refers to the spatial distribution of, e.g., substances, material, or matter in general, while property is a resulting characteristic that usually depends in a non-trivial way on spatial details of the structure. Traditionally, forward simulations models have been used for such tasks. Recently, several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models. In this work, we develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science: data from a two-dimensional Ising model for predicting the formation of magnetic domains and data representing the evolution of dual-phase microstructures from the Cahn-Hilliard model. We analyze the accuracy and robustness of all models and elucidate the reasons for the differences in their performances. The impact of including domain knowledge through tailored features is studied, and general recommendations based on the availability and quality of training data are derived from this.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司