Many popular policy gradient methods for reinforcement learning follow a biased approximation of the policy gradient known as the discounted approximation. While it has been shown that the discounted approximation of the policy gradient is not the gradient of any objective function, little else is known about its convergence behavior or properties. In this paper, we show that if the discounted approximation is followed such that the discount factor is increased slowly at a rate related to a decreasing learning rate, the resulting method recovers the standard guarantees of gradient ascent on the undiscounted objective.
In this work, we describe a generic approach to show convergence with high probability for both stochastic convex and non-convex optimization with sub-Gaussian noise. In previous works for convex optimization, either the convergence is only in expectation or the bound depends on the diameter of the domain. Instead, we show high probability convergence with bounds depending on the initial distance to the optimal solution. The algorithms use step sizes analogous to the standard settings and are universal to Lipschitz functions, smooth functions, and their linear combinations. This method can be applied to the non-convex case. We demonstrate an $O((1+\sigma^{2}\log(1/\delta))/T+\sigma/\sqrt{T})$ convergence rate when the number of iterations $T$ is known and an $O((1+\sigma^{2}\log(T/\delta))/\sqrt{T})$ convergence rate when $T$ is unknown for SGD, where $1-\delta$ is the desired success probability. These bounds improve over existing bounds in the literature. Additionally, we demonstrate that our techniques can be used to obtain high probability bound for AdaGrad-Norm (Ward et al., 2019) that removes the bounded gradients assumption from previous works. Furthermore, our technique for AdaGrad-Norm extends to the standard per-coordinate AdaGrad algorithm (Duchi et al., 2011), providing the first noise-adapted high probability convergence for AdaGrad.
In this paper we present an active-set method for the solution of $\ell_1$-regularized convex quadratic optimization problems. It is derived by combining a proximal method of multipliers (PMM) strategy with a standard semismooth Newton method (SSN). The resulting linear systems are solved using a Krylov-subspace method, accelerated by certain general-purpose preconditioners which are shown to be optimal with respect to the proximal parameters. Practical efficiency is further improved by warm-starting the algorithm using a proximal alternating direction method of multipliers. We show that the outer PMM achieves global convergence under mere feasibility assumptions. Under additional standard assumptions, the PMM scheme achieves global linear and local superlinear convergence. The SSN scheme is locally superlinearly convergent, assuming that its associated linear systems are solved accurately enough, and globally convergent under certain additional regularity assumptions. We provide numerical evidence to demonstrate the effectiveness of the approach by comparing it against OSQP and IP-PMM (an ADMM and a regularized IPM solver, respectively) on several elastic-net linear regression and $L^1$-regularized PDE-constrained optimization problems.
Computational imaging has been revolutionized by compressed sensing algorithms, which offer guaranteed uniqueness, convergence, and stability properties. Model-based deep learning methods that combine imaging physics with learned regularization priors have emerged as more powerful alternatives for image recovery. The main focus of this paper is to introduce a memory efficient model-based algorithm with similar theoretical guarantees as CS methods. The proposed iterative algorithm alternates between a gradient descent involving the score function and a conjugate gradient algorithm to encourage data consistency. The score function is modeled as a monotone convolutional neural network. Our analysis shows that the monotone constraint is necessary and sufficient to enforce the uniqueness of the fixed point in arbitrary inverse problems. In addition, it also guarantees the convergence to a fixed point, which is robust to input perturbations. We introduce two implementations of the proposed MOL framework, which differ in the way the monotone property is imposed. The first approach enforces a strict monotone constraint, while the second one relies on an approximation. The guarantees are not valid for the second approach in the strict sense. However, our empirical studies show that the convergence and robustness of both approaches are comparable, while the less constrained approximate implementation offers better performance. The proposed deep equilibrium formulation is significantly more memory efficient than unrolled methods, which allows us to apply it to 3D or 2D+time problems that current unrolled algorithms cannot handle.
Explicit communication among humans is key to coordinating and learning. Social learning, which uses cues from experts, can greatly benefit from the usage of explicit communication to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks. Emergent communication, a type of explicit communication, studies the creation of an artificial language to encode a high task-utility message directly from data. However, in most cases, emergent communication sends insufficiently compressed messages with little or null information, which also may not be understandable to a third-party listener. This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility to adequately explore sparse social communication scenarios in multi-agent reinforcement learning (MARL). We show that our model is able to i) develop a natural-language-inspired lexicon of messages that is independently composed of a set of emergent concepts, which span the observations and intents with minimal bits, ii) develop communication to align the action policies of heterogeneous agents with dissimilar feature models, and iii) learn a communication policy from watching an expert's action policy, which we term `social shadowing'.
Learning from human preferences is important for language models to be helpful and useful for humans, and to align with human and social values. Prior work have achieved remarkable successes by learning from human feedback to understand and follow instructions. Nonetheless, these methods are either founded on hand-picked model generations that are favored by human annotators, rendering them ineffective in terms of data utilization and challenging to apply in general, or they depend on reward functions and reinforcement learning, which are prone to imperfect reward function and extremely challenging to optimize. In this work, we propose a novel technique, Chain of Hindsight, that is easy to optimize and can learn from any form of feedback, regardless of its polarity. Our idea is inspired by how humans learn from extensive feedback presented in the form of languages. We convert all types of feedback into sentences, which are then used to fine-tune the model, allowing us to take advantage of the language comprehension capabilities of language models. We condition the model on a sequence of model generations paired with feedback. By doing so, models are trained to generate outputs based on feedback, and models can learn to identify and correct negative attributes or errors. Applying our method to large language models, we observed that Chain of Hindsight significantly surpasses previous methods in aligning language models with human preferences. We observed significant improvements on summarization and dialogue tasks and our approach is markedly preferred in human evaluations.
Many sequential decision-making problems need optimization of different objectives which possibly conflict with each other. The conventional way to deal with a multi-task problem is to establish a scalar objective function based on a linear combination of different objectives. However, for the case of having conflicting objectives with different scales, this method needs a trial-and-error approach to properly find proper weights for the combination. As such, in most cases, this approach cannot guarantee an optimal Pareto solution. In this paper, we develop a single-agent scale-independent multi-objective reinforcement learning on the basis of the Advantage Actor-Critic (A2C) algorithm. A convergence analysis is then done for the devised multi-objective algorithm providing a convergence-in-mean guarantee. We then perform some experiments over a multi-task problem to evaluate the performance of the proposed algorithm. Simulation results show the superiority of developed multi-objective A2C approach against the single-objective algorithm.
The symmetric $C^0$ interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. Two appendices present the realization of our proposed parameter selection in various established finite element software packages as well as a detailed documentation of a self-contained MATLAB program for the lowest-order $C^0$ interior penalty method.
Dynamic Algorithm Configuration (DAC) tackles the question of how to automatically learn policies to control parameters of algorithms in a data-driven fashion. This question has received considerable attention from the evolutionary community in recent years. Having a good benchmark collection to gain structural understanding on the effectiveness and limitations of different solution methods for DAC is therefore strongly desirable. Following recent work on proposing DAC benchmarks with well-understood theoretical properties and ground truth information, in this work, we suggest as a new DAC benchmark the controlling of the key parameter $\lambda$ in the $(1+(\lambda,\lambda))$~Genetic Algorithm for solving OneMax problems. We conduct a study on how to solve the DAC problem via the use of (static) automated algorithm configuration on the benchmark, and propose techniques to significantly improve the performance of the approach. Our approach is able to consistently outperform the default parameter control policy of the benchmark derived from previous theoretical work on sufficiently large problem sizes. We also present new findings on the landscape of the parameter-control search policies and propose methods to compute stronger baselines for the benchmark via numerical approximations of the true optimal policies.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.