亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the fundamental limits of availability and throughput for independent and heterogeneous demands of a limited resource. Availability is the probability that the demands are below the capacity of the resource. Throughput is the expected fraction of the resource that is utilized by the demands. We offer a concentration inequality generator that gives lower bounds on feasible availability and throughput pairs with a given capacity and independent but not necessarily identical distributions of up-to-unit demands. We show that availability and throughput cannot both be poor. These bounds are analogous to tail inequalities on sums of independent random variables, but hold throughout the support of the demand distribution. This analysis gives analytically tractable bounds supporting the unit-demand characterization of Chawla, Devanur, and Lykouris (2023) and generalizes to up-to-unit demands. Our bounds also provide an approach towards improved multi-unit prophet inequalities (Hajiaghayi, Kleinberg, and Sandholm, 2007). They have applications to transaction fee mechanism design (for blockchains) where high availability limits the probability of profitable user-miner coalitions (Chung and Shi, 2023).

相關內容

Conformal prediction, and split conformal prediction as a specific implementation, offer a distribution-free approach to estimating prediction intervals with statistical guarantees. Recent work has shown that split conformal prediction can produce state-of-the-art prediction intervals when focusing on marginal coverage, i.e. on a calibration dataset the method produces on average prediction intervals that contain the ground truth with a predefined coverage level. However, such intervals are often not adaptive, which can be problematic for regression problems with heteroskedastic noise. This paper tries to shed new light on how prediction intervals can be constructed, using methods such as normalized and Mondrian conformal prediction, in such a way that they adapt to the heteroskedasticity of the underlying process. Theoretical and experimental results are presented in which these methods are compared in a systematic way. In particular, it is shown how the conditional validity of a chosen conformal predictor can be related to (implicit) assumptions about the data-generating distribution.

In this article, an efficient numerical method for computing finite-horizon controllability Gramians in Cholesky-factored form is proposed. The method is applicable to general dense matrices of moderate size and produces a Cholesky factor of the Gramian without computing the full product. In contrast to other methods applicable to this task, the proposed method is a generalization of the scaling-and-squaring approach for approximating the matrix exponential. It exploits a similar doubling formula for the Gramian, and thereby keeps the required computational effort modest. Most importantly, a rigorous backward error analysis is provided, which guarantees that the approximation is accurate to the round-off error level in double precision. This accuracy is illustrated in practice on a large number of standard test examples. The method has been implemented in the Julia package FiniteHorizonGramians.jl, which is available online under the MIT license. Code for reproducing the experimental results is included in this package, as well as code for determining the optimal method parameters. The analysis can thus easily be adapted to a different finite-precision arithmetic.

This paper analyses conforming and nonconforming virtual element formulations of arbitrary polynomial degrees on general polygonal meshes for the coupling of solid and fluid phases in deformable porous plates. The governing equations consist of one fourth-order equation for the transverse displacement of the middle surface coupled with a second-order equation for the pressure head relative to the solid with mixed boundary conditions. We propose novel enrichment operators that connect nonconforming virtual element spaces of general degree to continuous Sobolev spaces. These operators satisfy additional orthogonal and best-approximation properties (referred to as a conforming companion operator in the context of finite element methods), which play an important role in the nonconforming methods. This paper proves a priori error estimates in the best-approximation form, and derives residual--based reliable and efficient a posteriori error estimates in appropriate norms, and shows that these error bounds are robust with respect to the main model parameters. The computational examples illustrate the numerical behaviour of the suggested virtual element discretisations and confirm the theoretical findings on different polygonal meshes with mixed boundary conditions.

This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.

The electrical impedance tomography (EIT) problem of estimating the unknown conductivity distribution inside a domain from boundary current or voltage measurements requires the solution of a nonlinear inverse problem. Sparsity promoting hierarchical Bayesian models have been shown to be very effective in the recovery of almost piecewise constant solutions in linear inverse problems. We demonstrate that by exploiting linear algebraic considerations it is possible to organize the calculation for the Bayesian solution of the nonlinear EIT inverse problem via finite element methods with sparsity promoting priors in a computationally efficient manner. The proposed approach uses the Iterative Alternating Sequential (IAS) algorithm for the solution of the linearized problems. Within the IAS algorithm, a substantial reduction in computational complexity is attained by exploiting the low dimensionality of the data space and an adjoint formulation of the Tikhonov regularized solution that constitutes part of the iterative updating scheme. Numerical tests illustrate the computational efficiency of the proposed algorithm. The paper sheds light also on the convexity properties of the objective function of the maximum a posteriori (MAP) estimation problem.

Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.

In cluster-randomized experiments, there is emerging interest in exploring the causal mechanism in which a cluster-level treatment affects the outcome through an intermediate outcome. Despite an extensive development of causal mediation methods in the past decade, only a few exceptions have been considered in assessing causal mediation in cluster-randomized studies, all of which depend on parametric model-based estimators. In this article, we develop the formal semiparametric efficiency theory to motivate several doubly-robust methods for addressing several mediation effect estimands corresponding to both the cluster-average and the individual-level treatment effects in cluster-randomized experiments--the natural indirect effect, natural direct effect, and spillover mediation effect. We derive the efficient influence function for each mediation effect, and carefully parameterize each efficient influence function to motivate practical strategies for operationalizing each estimator. We consider both parametric working models and data-adaptive machine learners to estimate the nuisance functions, and obtain semiparametric efficient causal mediation estimators in the latter case. Our methods are illustrated via extensive simulations and two completed cluster-randomized experiments.

Scopus and the Web of Science have been the foundation for research in the science of science even though these traditional databases systematically underrepresent certain disciplines and world regions. In response, new inclusive databases, notably OpenAlex, have emerged. While many studies have begun using OpenAlex as a data source, few critically assess its limitations. This study, conducted in collaboration with the OpenAlex team, addresses this gap by comparing OpenAlex to Scopus across a number of dimensions. The analysis concludes that OpenAlex is a superset of Scopus and can be a reliable alternative for some analyses, particularly at the country level. Despite this, issues of metadata accuracy and completeness show that additional research is needed to fully comprehend and address OpenAlex's limitations. Doing so will be necessary to confidently use OpenAlex across a wider set of analyses, including those that are not at all possible with more constrained databases.

This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.

In the evolving landscape of digital finance, the transition from centralized to decentralized trust mechanisms, primarily driven by blockchain technology, plays a critical role in shaping the cryptocurrency ecosystem. This paradigm shift raises questions about the traditional reliance on centralized trust and introduces a novel, decentralized trust framework built upon distributed networks. Our research delves into the consequences of this shift, particularly focusing on how incidents influence trust within cryptocurrency markets, thereby affecting trade behaviors in centralized (CEXs) and decentralized exchanges (DEXs). We conduct a comprehensive analysis of various events, assessing their effects on market dynamics, including token valuation and trading volumes in both CEXs and DEXs. Our findings highlight the pivotal role of trust in directing user preferences and the fluidity of trust transfer between centralized and decentralized platforms. Despite certain anomalies, the results largely align with our initial hypotheses, revealing the intricate nature of user trust in cryptocurrency markets. This study contributes significantly to interdisciplinary research, bridging distributed systems, behavioral finance, and Decentralized Finance (DeFi). It offers valuable insights for the distributed computing community, particularly in understanding and applying distributed trust mechanisms in digital economies, paving the way for future research that could further explore the socio-economic dimensions and leverage blockchain data in this dynamic domain.

北京阿比特科技有限公司