Statistical depth functions order the elements of a space with respect to their centrality in a probability distribution or dataset. Since many depth functions are maximized in the real line by the median, they provide a natural approach to defining median-like location estimators for more general types of data (in our case, fuzzy data). We analyze the relationships between depth-based medians, medians based on the support function, and some notions of a median for fuzzy data in the literature. We take advantage of specific depth functions for fuzzy data defined in our former papers: adaptations of Tukey depth, simplicial depth, $L^1$-depth and projection depth.
Lax extensions of set functors play a key role in various areas including topology, concurrent systems, and modal logic, while predicate liftings provide a generic semantics of modal operators. We take a fresh look at the connection between lax extensions and predicate liftings from the point of view of quantale-enriched relations. Using this perspective, we show in particular that various fundamental concepts and results arise naturally and their proofs become very elementary. Ultimately, we prove that every lax extension is induced by a class of predicate liftings; we discuss several implications of this result.
Closure spaces, a generalisation of topological spaces, have shown to be a convenient theoretical framework for spatial model checking. The closure operator of closure spaces and quasi-discrete closure spaces induces a notion of neighborhood akin to that of topological spaces that build on open sets. For closure models and quasi-discrete closure models, in this paper we present three notions of bisimilarity that are logically characterised by corresponding modal logics with spatial modalities: (i) CM-bisimilarity for closure models (CMs) is shown to generalise Topo-bisimilarity for topological models. CM-bisimilarity corresponds to equivalence with respect to the infinitary modal logic IML that includes the modality ${\cal N}$ for ``being near''. (ii) CMC-bisimilarity, with `CMC' standing for CM-bisimilarity with converse, refines CM-bisimilarity for quasi-discrete closure spaces, carriers of quasi-discrete closure models. Quasi-discrete closure models come equipped with two closure operators, Direct ${\cal C}$ and Converse ${\cal C}$, stemming from the binary relation underlying closure and its converse. CMC-bisimilarity, is captured by the infinitary modal logic IMLC including two modalities, Direct ${\cal N}$ and Converse ${\cal N}$, corresponding to the two closure operators. (iii) CoPa-bisimilarity on quasi-discrete closure models, which is weaker than CMC-bisimilarity, is based on the notion of compatible paths. The logical counterpart of CoPa-bisimilarity is the infinitary modal logic ICRL with modalities Direct $\zeta$ and Converse $\zeta$, whose semantics relies on forward and backward paths, respectively. It is shown that CoPa-bisimilarity for quasi-discrete closure models relates to divergence-blind stuttering equivalence for Kripke structures.
This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $\O(n)$ and $\O(n^2)$ respectively, as compared to the $\O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems.
A countable structure is indivisible if for every coloring with finite range there is a monochromatic isomorphic subcopy of the structure. Each indivisible structure $\mathcal{S}$ naturally corresponds to an indivisibility problem $\mathsf{Ind}\ \mathcal{S}$, which outputs such a subcopy given a presentation and coloring. We investigate the Weihrauch complexity of the indivisibility problems for two structures: the rational numbers $\mathbb{Q}$ as a linear order, and the equivalence relation $\mathscr{E}$ with countably many equivalence classes each having countably many members. We separate the Weihrauch degrees of both $\mathsf{Ind}\ \mathbb{Q}$ and $\mathsf{Ind}\ \mathscr{E}$ from several benchmark problems, showing in particular that $\mathsf{C}_\mathbb{N} \vert_\mathrm{W} \mathsf{Ind}\ \mathbb{Q}$ and hence $\mathsf{Ind}\ \mathbb{Q}$ is strictly weaker than the problem of finding an interval in which some color is dense for a given coloring of $\mathbb{Q}$; and that the Weihrauch degree of $\mathsf{Ind}\ \mathscr{E}_k$ is strictly between those of $\mathsf{SRT}^2_k$ and $\mathsf{RT}^2_k$, where $\mathsf{Ind}\ \mathcal{S}_k$ is the restriction of $\mathsf{Ind}\ \mathcal{S}$ to $k$-colorings.
This paper develops a general methodology to conduct statistical inference for observations indexed by multiple sets of entities. We propose a novel multiway empirical likelihood statistic that converges to a chi-square distribution under the non-degenerate case, where corresponding Hoeffding type decomposition is dominated by linear terms. Our methodology is related to the notion of jackknife empirical likelihood but the leave-out pseudo values are constructed by leaving columns or rows. We further develop a modified version of our multiway empirical likelihood statistic, which converges to a chi-square distribution regardless of the degeneracy, and discover its desirable higher-order property compared to the t-ratio by the conventional Eicker-White type variance estimator. The proposed methodology is illustrated by several important statistical problems, such as bipartite network, generalized estimating equations, and three-way observations.
While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.
This research investigates the numerical approximation of the two-dimensional convection-dominated singularly perturbed problem on square, circular, and elliptic domains. Singularly perturbed boundary value problems present a significant challenge due to the presence of sharp boundary layers in their solutions. Additionally, the considered domain exhibits characteristic points, giving rise to a degenerate boundary layer problem. The stiffness of the problem is attributed to the sharp singular layers, which can result in substantial computational errors if not appropriately addressed. Traditional numerical methods typically require extensive mesh refinements near the boundary to achieve accurate solutions, which can be computationally expensive. To address the challenges posed by singularly perturbed problems, we employ physics-informed neural networks (PINNs). However, PINNs may struggle with rapidly varying singularly perturbed solutions over a small domain region, leading to inadequate resolution and potentially inaccurate or unstable results. To overcome this limitation, we introduce a semi-analytic method that augments PINNs with singular layers or corrector functions. Through our numerical experiments, we demonstrate significant improvements in both accuracy and stability, thus demonstrating the effectiveness of our proposed approach.
Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our preliminary results indicate that the measurement system may achieve accuracy within 0.5 mm, especially for small motions, with improved accuracy possible through kinematic calibration.
The maximum likelihood threshold (MLT) of a graph $G$ is the minimum number of samples to almost surely guarantee existence of the maximum likelihood estimate in the corresponding Gaussian graphical model. We give a new characterization of the MLT in terms of rigidity-theoretic properties of $G$ and use this characterization to give new combinatorial lower bounds on the MLT of any graph. We use the new lower bounds to give high-probability guarantees on the maximum likelihood thresholds of sparse Erd{\"o}s-R\'enyi random graphs in terms of their average density. These examples show that the new lower bounds are within a polylog factor of tight, where, on the same graph families, all known lower bounds are trivial. Based on computational experiments made possible by our methods, we conjecture that the MLT of an Erd{\"o}s-R\'enyi random graph is equal to its generic completion rank with high probability. Using structural results on rigid graphs in low dimension, we can prove the conjecture for graphs with MLT at most $4$ and describe the threshold probability for the MLT to switch from $3$ to $4$. We also give a geometric characterization of the MLT of a graph in terms of a new "lifting" problem for frameworks that is interesting in its own right. The lifting perspective yields a new connection between the weak MLT (where the maximum likelihood estimate exists only with positive probability) and the classical Hadwiger-Nelson problem.
Simulation-based inference (SBI) provides a powerful framework for inferring posterior distributions of stochastic simulators in a wide range of domains. In many settings, however, the posterior distribution is not the end goal itself -- rather, the derived parameter values and their uncertainties are used as a basis for deciding what actions to take. Unfortunately, because posterior distributions provided by SBI are (potentially crude) approximations of the true posterior, the resulting decisions can be suboptimal. Here, we address the question of how to perform Bayesian decision making on stochastic simulators, and how one can circumvent the need to compute an explicit approximation to the posterior. Our method trains a neural network on simulated data and can predict the expected cost given any data and action, and can, thus, be directly used to infer the action with lowest cost. We apply our method to several benchmark problems and demonstrate that it induces similar cost as the true posterior distribution. We then apply the method to infer optimal actions in a real-world simulator in the medical neurosciences, the Bayesian Virtual Epileptic Patient, and demonstrate that it allows to infer actions associated with low cost after few simulations.