亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compact directed acyclic word graphs (CDAWGs) [Blumer et al. 1987] are a fundamental data structure on strings with applications in text pattern searching, data compression, and pattern discovery. Intuitively, the CDAWG of a string $T$ is obtained by merging isomorphic subtrees of the suffix tree [Weiner 1973] of the same string $T$, thus CDAWGs are a compact indexing structure. In this paper, we investigate the sensitivity of CDAWGs when a single character edit operation (insertion, deletion, or substitution) is performed at the left-end of the input string $T$, namely, we are interested in the worst-case increase in the size of the CDAWG after a left-end edit operation. We prove that if $e$ is the number of edges of the CDAWG for string $T$, then the number of new edges added to the CDAWG after a left-end edit operation on $T$ does not exceed $e$. Further, we present a matching lower bound on the sensitivity of CDAWGs for left-end insertions, and almost matching lower bounds for left-end deletions and substitutions. We then generalize our lower-bound instance for left-end insertions to leftward online construction of the CDAWG, and show that it requires $\Omega(n^2)$ time for some string of length $n$.

相關內容

Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at //github.com/xiasong0501/DRS.

Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices. LLM unlearning aims at removing undesired data influences and associated model capabilities without compromising utility out of the scope of unlearning. While interest in studying LLM unlearning is growing,the impact of the optimizer choice for LLM unlearning remains under-explored. In this work, we shed light on the significance of optimizer selection in LLM unlearning for the first time, establishing a clear connection between {second-order optimization} and influence unlearning (a classical approach using influence functions to update the model for data influence removal). This insight propels us to develop a second-order unlearning framework, termed SOUL, built upon the second-order clipped stochastic optimization (Sophia)-based LLM training method. SOUL extends the static, one-shot model update using influence unlearning to a dynamic, iterative unlearning process. Our extensive experiments show that SOUL consistently outperforms conventional first-order methods across various unlearning tasks, models, and metrics, suggesting the promise of second-order optimization in providing a scalable and easily implementable solution for LLM unlearning.

Recently, the mysterious In-Context Learning (ICL) ability exhibited by Transformer architectures, especially in large language models (LLMs), has sparked significant research interest. However, the resilience of Transformers' in-context learning capabilities in the presence of noisy samples, prevalent in both training corpora and prompt demonstrations, remains underexplored. In this paper, inspired by prior research that studies ICL ability using simple function classes, we take a closer look at this problem by investigating the robustness of Transformers against noisy labels. Specifically, we first conduct a thorough evaluation and analysis of the robustness of Transformers against noisy labels during in-context learning and show that they exhibit notable resilience against diverse types of noise in demonstration labels. Furthermore, we delve deeper into this problem by exploring whether introducing noise into the training set, akin to a form of data augmentation, enhances such robustness during inference, and find that such noise can indeed improve the robustness of ICL. Overall, our fruitful analysis and findings provide a comprehensive understanding of the resilience of Transformer models against label noises during ICL and provide valuable insights into the research on Transformers in natural language processing. Our code is available at //github.com/InezYu0928/in-context-learning.

This paper introduces an innovative approach to the design of efficient decoders that meet the rigorous requirements of modern communication systems, particularly in terms of ultra-reliability and low-latency. We enhance an established hybrid decoding framework by proposing an ordered statistical decoding scheme augmented with a sliding window technique. This novel component replaces a key element of the current architecture, significantly reducing average complexity. A critical aspect of our scheme is the integration of a pre-trained neural network model that dynamically determines the progression or halt of the sliding window process. Furthermore, we present a user-defined soft margin mechanism that adeptly balances the trade-off between decoding accuracy and complexity. Empirical results, supported by a thorough complexity analysis, demonstrate that the proposed scheme holds a competitive advantage over existing state-of-the-art decoders, notably in addressing the decoding failures prevalent in neural min-sum decoders. Additionally, our research uncovers that short LDPC codes can deliver performance comparable to that of short classical linear codes within the critical waterfall region of the SNR, highlighting their potential for practical applications.

Large Vision-Language Models (LVLMs) are gaining traction for their remarkable ability to process and integrate visual and textual data. Despite their popularity, the capacity of LVLMs to generate precise, fine-grained textual descriptions has not been fully explored. This study addresses this gap by focusing on \textit{distinctiveness} and \textit{fidelity}, assessing how models like Open-Flamingo, IDEFICS, and MiniGPT-4 can distinguish between similar objects and accurately describe visual features. We proposed the Textual Retrieval-Augmented Classification (TRAC) framework, which, by leveraging its generative capabilities, allows us to delve deeper into analyzing fine-grained visual description generation. This research provides valuable insights into the generation quality of LVLMs, enhancing the understanding of multimodal language models. Notably, MiniGPT-4 stands out for its better ability to generate fine-grained descriptions, outperforming the other two models in this aspect. The code is provided at \url{//anonymous.4open.science/r/Explore_FGVDs-E277}.

This work addresses the problem of simulating Gaussian random fields that are continuously indexed over a class of metric graphs, termed graphs with Euclidean edges, being more general and flexible than linear networks. We introduce three general algorithms that allow to reconstruct a wide spectrum of random fields having a covariance function that depends on a specific metric, called resistance metric, and proposed in recent literature. The algorithms are applied to a synthetic case study consisting of a street network. They prove to be fast and accurate in that they reproduce the target covariance function and provide random fields whose finite-dimensional distributions are approximately Gaussian.

We present an unsupervised 3D shape co-segmentation method which learns a set of deformable part templates from a shape collection. To accommodate structural variations in the collection, our network composes each shape by a selected subset of template parts which are affine-transformed. To maximize the expressive power of the part templates, we introduce a per-part deformation network to enable the modeling of diverse parts with substantial geometry variations, while imposing constraints on the deformation capacity to ensure fidelity to the originally represented parts. We also propose a training scheme to effectively overcome local minima. Architecturally, our network is a branched autoencoder, with a CNN encoder taking a voxel shape as input and producing per-part transformation matrices, latent codes, and part existence scores, and the decoder outputting point occupancies to define the reconstruction loss. Our network, coined DAE-Net for Deforming Auto-Encoder, can achieve unsupervised 3D shape co-segmentation that yields fine-grained, compact, and meaningful parts that are consistent across diverse shapes. We conduct extensive experiments on the ShapeNet Part dataset, DFAUST, and an animal subset of Objaverse to show superior performance over prior methods. Code and data are available at //github.com/czq142857/DAE-Net.

Self-supervised learning algorithms (SSL) based on instance discrimination have shown promising results, performing competitively or even outperforming supervised learning counterparts in some downstream tasks. Such approaches employ data augmentation to create two views of the same instance (i.e., positive pairs) and encourage the model to learn good representations by attracting these views closer in the embedding space without collapsing to the trivial solution. However, data augmentation is limited in representing positive pairs, and the repulsion process between the instances during contrastive learning may discard important features for instances that have similar categories. To address this issue, we propose an approach to identify those images with similar semantic content and treat them as positive instances, thereby reducing the chance of discarding important features during representation learning and increasing the richness of the latent representation. Our approach is generic and could work with any self-supervised instance discrimination frameworks such as MoCo and SimSiam. To evaluate our method, we run experiments on three benchmark datasets: ImageNet, STL-10 and CIFAR-10 with different instance discrimination SSL approaches. The experimental results show that our approach consistently outperforms the baseline methods across all three datasets; for instance, we improve upon the vanilla MoCo-v2 by 4.1% on ImageNet under a linear evaluation protocol over 800 epochs. We also report results on semi-supervised learning, transfer learning on downstream tasks, and object detection.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

Extreme multi-label text classification (XMC) aims to tag each input text with the most relevant labels from an extremely large label set, such as those that arise in product categorization and e-commerce recommendation. Recently, pretrained language representation models such as BERT achieve remarkable state-of-the-art performance across a wide range of NLP tasks including sentence classification among small label sets (typically fewer than thousands). Indeed, there are several challenges in applying BERT to the XMC problem. The main challenges are: (i) the difficulty of capturing dependencies and correlations among labels, whose features may come from heterogeneous sources, and (ii) the tractability to scale to the extreme label setting as the model size can be very large and scale linearly with the size of the output space. To overcome these challenges, we propose X-BERT, the first feasible attempt to finetune BERT models for a scalable solution to the XMC problem. Specifically, X-BERT leverages both the label and document text to build label representations, which induces semantic label clusters in order to better model label dependencies. At the heart of X-BERT is finetuning BERT models to capture the contextual relations between input text and the induced label clusters. Finally, an ensemble of the different BERT models trained on heterogeneous label clusters leads to our best final model. Empirically, on a Wiki dataset with around 0.5 million labels, X-BERT achieves new state-of-the-art results where the precision@1 reaches 67:80%, a substantial improvement over 32.58%/60.91% of deep learning baseline fastText and competing XMC approach Parabel, respectively. This amounts to a 11.31% relative improvement over Parabel, which is indeed significant since the recent approach SLICE only has 5.53% relative improvement.

北京阿比特科技有限公司