亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Predicting whether subjects with mild cognitive impairment (MCI) will convert to Alzheimer's disease is a significant clinical challenge. Longitudinal variations and complementary information inherent in longitudinal and multimodal data are crucial for MCI conversion prediction, but persistent issue of missing data in these data may hinder their effective application. Additionally, conversion prediction should be achieved in the early stages of disease progression in clinical practice, specifically at baseline visit (BL). Therefore, longitudinal data should only be incorporated during training to capture disease progression information. To address these challenges, a multi-view imputation and cross-attention network (MCNet) was proposed to integrate data imputation and MCI conversion prediction in a unified framework. First, a multi-view imputation method combined with adversarial learning was presented to handle various missing data scenarios and reduce imputation errors. Second, two cross-attention blocks were introduced to exploit the potential associations in longitudinal and multimodal data. Finally, a multi-task learning model was established for data imputation, longitudinal classification, and conversion prediction tasks. When the model was appropriately trained, the disease progression information learned from longitudinal data can be leveraged by BL data to improve MCI conversion prediction at BL. MCNet was tested on two independent testing sets and single-modal BL data to verify its effectiveness and flexibility in MCI conversion prediction. Results showed that MCNet outperformed several competitive methods. Moreover, the interpretability of MCNet was demonstrated. Thus, our MCNet may be a valuable tool in longitudinal and multimodal data analysis for MCI conversion prediction. Codes are available at //github.com/Meiyan88/MCNET.

相關內容

The focal point of egocentric video understanding is modelling hand-object interactions. Standard models, e.g. CNNs or Vision Transformers, which receive RGB frames as input perform well. However, their performance improves further by employing additional input modalities that provide complementary cues, such as object detections, optical flow, audio, etc. The added complexity of the modality-specific modules, on the other hand, makes these models impractical for deployment. The goal of this work is to retain the performance of such a multimodal approach, while using only the RGB frames as input at inference time. We demonstrate that for egocentric action recognition on the Epic-Kitchens and the Something-Something datasets, students which are taught by multimodal teachers tend to be more accurate and better calibrated than architecturally equivalent models trained on ground truth labels in a unimodal or multimodal fashion. We further adopt a principled multimodal knowledge distillation framework, allowing us to deal with issues which occur when applying multimodal knowledge distillation in a naive manner. Lastly, we demonstrate the achieved reduction in computational complexity, and show that our approach maintains higher performance with the reduction of the number of input views.

The prediction of mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD) is important for early treatment to prevent or slow the progression of AD. To accurately predict the MCI conversion to stable MCI or progressive MCI, we propose Triformer, a novel transformer-based framework with three specialized transformers to incorporate multi-model data. Triformer uses I) an image transformer to extract multi-view image features from medical scans, II) a clinical transformer to embed and correlate multi-modal clinical data, and III) a modality fusion transformer that produces an accurate prediction based on fusing the outputs from the image and clinical transformers. Triformer is evaluated on the Alzheimer's Disease Neuroimaging Initiative (ANDI)1 and ADNI2 datasets and outperforms previous state-of-the-art single and multi-modal methods.

Perceptual audio quality measurement systems algorithmically analyze the output of audio processing systems to estimate possible perceived quality degradation using perceptual models of human audition. In this manner, they save the time and resources associated with the design and execution of listening tests (LTs). Models of disturbance audibility predicting peripheral auditory masking in quality measurement systems have considerably increased subjective quality prediction performance of signals processed by perceptual audio codecs. Additionally, cognitive effects have also been known to regulate perceived distortion severity by influencing their salience. However, the performance gains due to cognitive effect models in quality measurement systems were inconsistent so far, particularly for music signals. Firstly, this paper presents an improved model of informational masking (IM) -- an important cognitive effect in quality perception -- that considers disturbance information complexity around the masking threshold. Secondly, we incorporate the proposed IM metric into a quality measurement systems using a novel interaction analysis procedure between cognitive effects and distortion metrics. The procedure establishes interactions between cognitive effects and distortion metrics using LT data. The proposed IM metric is shown to outperform previously proposed IM metrics in a validation task against subjective quality scores from large and diverse LT databases. Particularly, the proposed system showed an increased quality prediction of music signals coded with bandwidth extension techniques, where other models frequently fail.

A retention strategy based on an enlightened lapse model is a powerful profitabilitylever for a life insurer. Some machine learning models are excellent at predicting lapse,but from the insurer's perspective, predicting which policyholder is likely to lapse is notenough to design a retention strategy. In our paper, we define a lapse managementframework with an appropriate validation metric based on Customer Lifetime Value andprofitability. We include the risk of death in the study through competing risks considerations inparametric and tree-based models and show that further individualization of theexisting approaches leads to increased performance. We show that survival tree-basedmodels outperform parametric approaches and that the actuarial literature cansignificantly benefit from them. Then, we compare, on real data, how this frameworkleads to increased predicted gains for a life insurer and discuss the benefits of ourmodel in terms of commercial and strategic decision-making.

The task of inductive link prediction in (discrete) attributed multigraphs infers missing attributed links (relations) between nodes in new test multigraphs. Traditional relational learning methods face the challenge of limited generalization to OOD test multigraphs containing both novel nodes and novel relation types not seen in training. Recently, under the only assumption that all relation types share the same structural predictive patterns (single task), Gao et al. (2023) proposed an OOD link prediction method using the theoretical concept of double exchangeability (for nodes & relation types), in contrast to the (single) exchangeability (only for nodes) used to design Graph Neural Networks (GNNs). In this work we further extend the double exchangeability concept to multi-task double exchangeability, where we define link prediction in attributed multigraphs that can have distinct and potentially conflicting predictive patterns for different sets of relation types (multiple tasks). Our empirical results on real-world datasets demonstrate that our approach can effectively generalize to entirely new relation types in test, without access to additional information, yielding significant performance improvements over existing methods.

Storing tabular data in a way that balances storage and query efficiencies is a long standing research question in the database community. While there are several lossless compression techniques in the literature, in this work we argue and show that a novel Deep Learned Data Mapping (or DeepMapping) abstraction, which relies on the impressive memorization capabilities of deep neural networks, can provide better storage cost, better latency, and better run-time memory footprint, all at the same time. Our proposed DeepMapping abstraction transforms a data set into multiple key-value mappings and constructs a multi-tasking neural network model that outputs the corresponding values for a given input key. In order to deal with the memorization errors, DeepMapping couples the learned neural network with a light-weight auxiliary data structure capable of correcting errors. The auxiliary structure further enables DeepMapping to efficiently deal with insertions, deletions, and updates, without having to re-train the mapping. Since the shape of the network has a significant impact on the overall size of the DeepMapping structure, we further propose a multi-task hybrid architecture search strategy to identify DeepMapping architectures that strike a desirable balance among memorization capacity, size, and efficiency. Extensive experiments with synthetic and benchmark datasets, including TPC-H and TPC-DS, demonstrated that the proposed DeepMapping approach can significantly reduce the latency of the key-based queries, while simultaneously improving both offline and run-time storage requirements against several cutting-edge competitors.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model.

北京阿比特科技有限公司