亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Information retrieval aims to find information that meets users' needs from the corpus. Different needs correspond to different IR tasks such as document retrieval, open-domain question answering, retrieval-based dialogue, etc., while they share the same schema to estimate the relationship between texts. It indicates that a good IR model can generalize to different tasks and domains. However, previous studies indicate that state-of-the-art neural information retrieval (NIR) models, e.g, pre-trained language models (PLMs) are hard to generalize. Mainly because the end-to-end fine-tuning paradigm makes the model overemphasize task-specific signals and domain biases but loses the ability to capture generalized essential signals. To address this problem, we propose a novel NIR training framework named NIR-Prompt for retrieval and reranking stages based on the idea of decoupling signal capturing and combination. NIR-Prompt exploits Essential Matching Module (EMM) to capture the essential matching signals and gets the description of tasks by Matching Description Module (MDM). The description is used as task-adaptation information to combine the essential matching signals to adapt to different tasks. Experiments under in-domain multi-task, out-of-domain multi-task, and new task adaptation settings show that NIR-Prompt can improve the generalization of PLMs in NIR for both retrieval and reranking stages compared with baselines.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · INFORMS · DNN · 在線 ·
2023 年 2 月 2 日

With the increase of pages and buttons in real-world applications, industrial-scale recommender systems face multi-domain and multi-task challenges. On the one hand, users and items in multiple domains suffer inconsistent distributions. On the other hand, multiple tasks have distinctive sparsity and interdependence. Personalization modeling is the core of recommender systems. Accurate personalization estimation helps to capture the degree of user preference for items in different situations, especially in the case of multiple domains and multiple tasks. In multi-task and multi-domain recommendation, how to introduce personalized priors into the model in the right place and in the right way is crucial. In this paper, we propose a plug-and-play Parameter and Embedding Personalized Network (PEPNet) for multi-task recommendation in the multi-domain setting. PEPNet takes features with strong bias as input and dynamically acts on the bottom-layer embeddings or the top-layer DNN hidden units in the model through the gate mechanism. By mapping significant priors to scaling weights ranging from 0 to 2, PEPNet introduces both parameter personalization and embedding personalization. Embedding Personalized Network (EPNet) selects and aligns embeddings with different semantics under multiple domains. Parameter Personalized Network (PPNet) influences DNN parameters to balance interdependent targets in multiple tasks. To further adapt to the characteristics of the model, we have made corresponding engineering optimizations on the Embedding and DNN parameter update strategies. We have deployed the model in Kuaishou and Kuaishou Express apps, serving over 300 million daily users. Both online and offline experiments have demonstrated substantial improvements in multiple metrics. In particular, we have seen a more than 1\% online increase in three major domains.

Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes using the image attribute. In this paper, we put forth a new GZSL approach exploiting Vision Transformer (ViT) to maximize the attribute-related information contained in the image feature. In ViT, the entire image region is processed without the degradation of the image resolution and the local image information is preserved in patch features. To fully enjoy these benefits of ViT, we exploit patch features as well as the CLS feature in extracting the attribute-related image feature. In particular, we propose a novel attention-based module, called attribute attention module (AAM), to aggregate the attribute-related information in patch features. In AAM, the correlation between each patch feature and the synthetic image attribute is used as the importance weight for each patch. From extensive experiments on benchmark datasets, we demonstrate that the proposed technique outperforms the state-of-the-art GZSL approaches by a large margin.

Large-scale models trained on broad data have recently become the mainstream architecture in computer vision due to their strong generalization performance. In this paper, the main focus is on an emergent ability in large vision models, known as in-context learning, which allows inference on unseen tasks by conditioning on in-context examples (a.k.a.~prompt) without updating the model parameters. This concept has been well-known in natural language processing but has only been studied very recently for large vision models. We for the first time provide a comprehensive investigation on the impact of in-context examples in computer vision, and find that the performance is highly sensitive to the choice of in-context examples. To overcome the problem, we propose a prompt retrieval framework to automate the selection of in-context examples. Specifically, we present (1) an unsupervised prompt retrieval method based on nearest example search using an off-the-shelf model, and (2) a supervised prompt retrieval method, which trains a neural network to choose examples that directly maximize in-context learning performance. The results demonstrate that our methods can bring non-trivial improvements to visual in-context learning in comparison to the commonly-used random selection.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.

The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF--better few-shot fine-tuning of language models--a suite of simple and complementary techniques for fine-tuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning.

The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has, without exaggeration, revolutionized the fields of natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage ranking architectures and learned dense representations that attempt to perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond the typical sentence-by-sentence processing approaches used in NLP, and techniques for addressing the tradeoff between effectiveness (result quality) and efficiency (query latency). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading.

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

Joint image-text embedding is the bedrock for most Vision-and-Language (V+L) tasks, where multimodality inputs are jointly processed for visual and textual understanding. In this paper, we introduce UNITER, a UNiversal Image-TExt Representation, learned through large-scale pre-training over four image-text datasets (COCO, Visual Genome, Conceptual Captions, and SBU Captions), which can power heterogeneous downstream V+L tasks with joint multimodal embeddings. We design three pre-training tasks: Masked Language Modeling (MLM), Image-Text Matching (ITM), and Masked Region Modeling (MRM, with three variants). Different from concurrent work on multimodal pre-training that apply joint random masking to both modalities, we use conditioned masking on pre-training tasks (i.e., masked language/region modeling is conditioned on full observation of image/text). Comprehensive analysis shows that conditioned masking yields better performance than unconditioned masking. We also conduct a thorough ablation study to find an optimal setting for the combination of pre-training tasks. Extensive experiments show that UNITER achieves new state of the art across six V+L tasks (over nine datasets), including Visual Question Answering, Image-Text Retrieval, Referring Expression Comprehension, Visual Commonsense Reasoning, Visual Entailment, and NLVR2.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司