亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Since distribution shifts are likely to occur after a model's deployment and can drastically decrease the model's performance, online test-time adaptation (TTA) continues to update the model during test-time, leveraging the current test data. In real-world scenarios, test data streams are not always independent and identically distributed (i.i.d.). Instead, they are frequently temporally correlated, making them non-i.i.d. Many existing methods struggle to cope with this scenario. In response, we propose a diversity-aware and category-balanced buffer that can simulate an i.i.d. data stream, even in non-i.i.d. scenarios. Combined with a diversity and entropy-weighted entropy loss, we show that a stable adaptation is possible on a wide range of corruptions and natural domain shifts, based on ImageNet. We achieve state-of-the-art results on most considered benchmarks.

相關內容

Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.

We consider the problem of multi-objective alignment of foundation models with human preferences, which is a critical step towards helpful and harmless AI systems. However, it is generally costly and unstable to fine-tune large foundation models using reinforcement learning (RL), and the multi-dimensionality, heterogeneity, and conflicting nature of human preferences further complicate the alignment process. In this paper, we introduce Rewards-in-Context (RiC), which conditions the response of a foundation model on multiple rewards in its prompt context and applies supervised fine-tuning for alignment. The salient features of RiC are simplicity and adaptivity, as it only requires supervised fine-tuning of a single foundation model and supports dynamic adjustment for user preferences during inference time. Inspired by the analytical solution of an abstracted convex optimization problem, our dynamic inference-time adjustment method approaches the Pareto-optimal solution for multiple objectives. Empirical evidence demonstrates the efficacy of our method in aligning both Large Language Models (LLMs) and diffusion models to accommodate diverse rewards with only around $10\%$ GPU hours compared with multi-objective RL baseline.

Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.

Anomaly detection is a critical challenge across various research domains, aiming to identify instances that deviate from normal data distributions. This paper explores the application of Generative Adversarial Networks (GANs) in fraud detection, comparing their advantages with traditional methods. GANs, a type of Artificial Neural Network (ANN), have shown promise in modeling complex data distributions, making them effective tools for anomaly detection. The paper systematically describes the principles of GANs and their derivative models, emphasizing their application in fraud detection across different datasets. And by building a collection of adversarial verification graphs, we will effectively prevent fraud caused by bots or automated systems and ensure that the users in the transaction are real. The objective of the experiment is to design and implement a fake face verification code and fraud detection system based on Generative Adversarial network (GANs) algorithm to enhance the security of the transaction process.The study demonstrates the potential of GANs in enhancing transaction security through deep learning techniques.

Container orchestration technologies are widely employed in cloud computing, facilitating the co-location of online and offline services on the same infrastructure. Online services demand rapid responsiveness and high availability, whereas offline services require extensive computational resources. However, this mixed deployment can lead to resource contention, adversely affecting the performance of online services, yet the metrics used by existing methods cannot accurately reflect the extent of interference. In this paper, we introduce scheduling latency as a novel metric for quantifying interference and compare it with existing metrics. Empirical evidence demonstrates that scheduling latency more accurately reflects the performance degradation of online services. We also utilize various machine learning techniques to predict potential interference on specific hosts for online services, providing reference information for subsequent scheduling decisions. Simultaneously, we propose a method for quantifying node interference based on scheduling latency. To enhance resource utilization, we train a model for online services that predicts CPU and MEM (memory) resource allocation based on workload type and QPS. Finally, we present a scheduling algorithm based on predictive modeling, aiming to reduce interference in online services while balancing node resource utilization. Through experiments and comparisons with three other baseline methods, we demonstrate the effectiveness of our approach. Compared with three baselines, our approach can reduce the average response time, 90th percentile response time, and 99th percentile response time of online services by 29.4%, 31.4%, and 14.5%, respectively.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司