The wide deployment of Large Language Models (LLMs) has given rise to strong demands for optimizing their inference performance. Today's techniques serving this purpose primarily focus on reducing latency and improving throughput through algorithmic and hardware enhancements, while largely overlooking their privacy side effects, particularly in a multi-user environment. In our research, for the first time, we discovered a set of new timing side channels in LLM systems, arising from shared caches and GPU memory allocations, which can be exploited to infer both confidential system prompts and those issued by other users. These vulnerabilities echo security challenges observed in traditional computing systems, highlighting an urgent need to address potential information leakage in LLM serving infrastructures. In this paper, we report novel attack strategies designed to exploit such timing side channels inherent in LLM deployments, specifically targeting the Key-Value (KV) cache and semantic cache widely used to enhance LLM inference performance. Our approach leverages timing measurements and classification models to detect cache hits, allowing an adversary to infer private prompts with high accuracy. We also propose a token-by-token search algorithm to efficiently recover shared prompt prefixes in the caches, showing the feasibility of stealing system prompts and those produced by peer users. Our experimental studies on black-box testing of popular online LLM services demonstrate that such privacy risks are completely realistic, with significant consequences. Our findings underscore the need for robust mitigation to protect LLM systems against such emerging threats.
Acyclic join queries can be evaluated instance-optimally using Yannakakis' algorithm, which avoids needlessly large intermediate results through semi-join passes. Recent work proposes to address the significant hidden constant factors arising from a naive implementation of Yannakakis by decomposing the hash join operator into two suboperators, called Lookup and Expand. In this paper, we present a novel method for integrating Lookup and Expand plans in interpreted environments, like column stores, formalizing them using Nested Semijoin Algebra (NSA) and implementing them through a shredding approach. We characterize the class of NSA expressions that can be evaluated instance-optimally as those that are 2-phase: no `shrinking' operator is applied after an unnest (i.e., expand). We introduce Shredded Yannakakis (SYA), an evaluation algorithm for acyclic joins that, starting from a binary join plan, transforms it into a 2-phase NSA plan, and then evaluates it through the shredding technique. We show that SYA is provably robust (i.e., never produces large intermediate results) and without regret (i.e., is never worse than the binary join plan under a suitable cost model) on the class of well-behaved binary join plans. Our experiments on a suite of 1,849 queries show that SYA improves performance for 88.7% of the queries with speedups up to 188x, while remaining competitive on the other queries. We hope this approach offers a fresh perspective on Yannakakis' algorithm, helping system engineers better understand its practical benefits and facilitating its adoption into a broader spectrum of query engines.
Causal reasoning (CR) is a crucial aspect of intelligence, essential for problem-solving, decision-making, and understanding the world. While large language models (LLMs) can generate rationales for their outputs, their ability to reliably perform causal reasoning remains uncertain, often falling short in tasks requiring a deep understanding of causality. In this survey, we provide a comprehensive review of research aimed at enhancing LLMs for causal reasoning. We categorize existing methods based on the role of LLMs: either as reasoning engines or as helpers providing knowledge or data to traditional CR methods, followed by a detailed discussion of the methodologies in each category. We then evaluate the performance of LLMs on various causal reasoning tasks, providing key findings and in-depth analysis. Finally, we provide insights from current studies and highlight promising directions for future research. We aim for this work to serve as a comprehensive resource, fostering further advancements in causal reasoning with LLMs. Resources are available at //github.com/chendl02/Awesome-LLM-causal-reasoning.
Dexterous robotic manipulation remains a significant challenge due to the high dimensionality and complexity of hand movements required for tasks like in-hand manipulation and object grasping. This paper addresses this issue by introducing Vector Quantized Action Chunking Embedding (VQ-ACE), a novel framework that compresses human hand motion into a quantized latent space, significantly reducing the action space's dimensionality while preserving key motion characteristics. By integrating VQ-ACE with both Model Predictive Control (MPC) and Reinforcement Learning (RL), we enable more efficient exploration and policy learning in dexterous manipulation tasks using a biomimetic robotic hand. Our results show that latent space sampling with MPC produces more human-like behavior in tasks such as Ball Rolling and Object Picking, leading to higher task success rates and reduced control costs. For RL, action chunking accelerates learning and improves exploration, demonstrated through faster convergence in tasks like cube stacking and in-hand cube reorientation. These findings suggest that VQ-ACE offers a scalable and effective solution for robotic manipulation tasks involving complex, high-dimensional state spaces, contributing to more natural and adaptable robotic systems.
How diverse are the outputs of large language models when diversity is desired? We examine the diversity of responses of various models to questions with multiple possible answers, comparing them with human responses. Our findings suggest that models' outputs are highly concentrated, reflecting a narrow, mainstream 'worldview', in comparison to humans, whose responses exhibit a much longer-tail. We examine three ways to increase models' output diversity: 1) increasing generation randomness via temperature sampling; 2) prompting models to answer from diverse perspectives; 3) aggregating outputs from several models. A combination of these measures significantly increases models' output diversity, reaching that of humans. We discuss implications of these findings for AI policy that wishes to preserve cultural diversity, an essential building block of a democratic social fabric.
Accurate tissue segmentation in fetal brain MRI remains challenging due to the dynamically changing anatomical anatomy and contrast during fetal development. To enhance segmentation accuracy throughout gestation, we introduced AtlasSeg, a dual-U-shape convolution network incorporating gestational age (GA) specific information as guidance. By providing a publicly available fetal brain atlas with segmentation label at the corresponding GA, AtlasSeg effectively extracted the contextual features of age-specific patterns in atlas branch and generated tissue segmentation in segmentation branch. Multi-scale attentive atlas feature fusions were constructed in all stages during encoding and decoding, giving rise to a dual-U-shape network to assist feature flow and information interactions between two branches. AtlasSeg outperformed six well-known segmentation networks in both our internal fetal brain MRI dataset and the external FeTA dataset. Ablation experiments demonstrate the efficiency of atlas guidance and the attention mechanism. The proposed AtlasSeg demonstrated superior segmentation performance against other convolution networks with higher segmentation accuracy, and may facilitate fetal brain MRI analysis in large-scale fetal brain studies.
Advanced Persistent Threats (APTs) are continuously evolving, leveraging their stealthiness and persistence to put increasing pressure on current provenance-based Intrusion Detection Systems (IDS). This evolution exposes several critical issues: (1) The dense interaction between malicious and benign nodes within provenance graphs introduces neighbor noise, hindering effective detection; (2) The complex prediction mechanisms of existing APTs detection models lead to the insufficient utilization of prior knowledge embedded in the data; (3) The high computational cost makes detection impractical. To address these challenges, we propose Vodka, a lightweight threat detection system built on a knowledge distillation framework, capable of node-level detection within audit log provenance graphs. Specifically, Vodka applies graph Laplacian regularization to reduce neighbor noise, obtaining smoothed and denoised graph signals. Subsequently, Vodka employs a teacher model based on GNNs to extract knowledge, which is then distilled into a lightweight student model. The student model is designed as a trainable combination of a feature transformation module and a personalized PageRank random walk label propagation module, with the former capturing feature knowledge and the latter learning label and structural knowledge. After distillation, the student model benefits from the knowledge of the teacher model to perform precise threat detection. Finally, Vodka reconstructs attack paths from anomalous nodes, providing insight into the attackers' strategies. We evaluate Vodka through extensive experiments on three public datasets and compare its performance against several state-of-the-art IDS solutions. The results demonstrate that Vodka achieves outstanding detection accuracy across all scenarios and the detection time is 1.4 to 5.2 times faster than the current state-of-the-art methods.
The propensity of Large Language Models (LLMs) to generate hallucinations and non-factual content undermines their reliability in high-stakes domains, where rigorous control over Type I errors (the conditional probability of incorrectly classifying hallucinations as truthful content) is essential. Despite its importance, formal verification of LLM factuality with such guarantees remains largely unexplored. In this paper, we introduce FactTest, a novel framework that statistically assesses whether an LLM can confidently provide correct answers to given questions with high-probability correctness guarantees. We formulate factuality testing as hypothesis testing problem to enforce an upper bound of Type I errors at user-specified significance levels. Notably, we prove that our framework also ensures strong Type II error control under mild conditions and can be extended to maintain its effectiveness when covariate shifts exist. %These analyses are amenable to the principled NP framework. Our approach is distribution-free and works for any number of human-annotated samples. It is model-agnostic and applies to any black-box or white-box LM. Extensive experiments on question-answering (QA) and multiple-choice benchmarks demonstrate that \approach effectively detects hallucinations and improves the model's ability to abstain from answering unknown questions, leading to an over 40% accuracy improvement.
As human-agent teaming (HAT) research continues to grow, computational methods for modeling HAT behaviors and measuring HAT effectiveness also continue to develop. One rising method involves the use of human digital twins (HDT) to approximate human behaviors and socio-emotional-cognitive reactions to AI-driven agent team members. In this paper, we address three research questions relating to the use of digital twins for modeling trust in HATs. First, to address the question of how we can appropriately model and operationalize HAT trust through HDT HAT experiments, we conducted causal analytics of team communication data to understand the impact of empathy, socio-cognitive, and emotional constructs on trust formation. Additionally, we reflect on the current state of the HAT trust science to discuss characteristics of HAT trust that must be replicable by a HDT such as individual differences in trust tendencies, emergent trust patterns, and appropriate measurement of these characteristics over time. Second, to address the question of how valid measures of HDT trust are for approximating human trust in HATs, we discuss the properties of HDT trust: self-report measures, interaction-based measures, and compliance type behavioral measures. Additionally, we share results of preliminary simulations comparing different LLM models for generating HDT communications and analyze their ability to replicate human-like trust dynamics. Third, to address how HAT experimental manipulations will extend to human digital twin studies, we share experimental design focusing on propensity to trust for HDTs vs. transparency and competency-based trust for AI agents.
Large Language Models (LLMs) are capable of generating persuasive Natural Language Explanations (NLEs) to justify their answers. However, the faithfulness of these explanations should not be readily trusted at face value. Recent studies have proposed various methods to measure the faithfulness of NLEs, typically by inserting perturbations at the explanation or feature level. We argue that these approaches are neither comprehensive nor correctly designed according to the established definition of faithfulness. Moreover, we highlight the risks of grounding faithfulness findings on out-of-distribution samples. In this work, we leverage a causal mediation technique called activation patching, to measure the faithfulness of an explanation towards supporting the explained answer. Our proposed metric, Causal Faithfulness quantifies the consistency of causal attributions between explanations and the corresponding model outputs as the indicator of faithfulness. We experimented across models varying from 2B to 27B parameters and found that models that underwent alignment tuning tend to produce more faithful and plausible explanations. We find that Causal Faithfulness is a promising improvement over existing faithfulness tests by taking into account the model's internal computations and avoiding out of distribution concerns that could otherwise undermine the validity of faithfulness assessments. We release the code in \url{//github.com/wj210/Causal-Faithfulness}
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.