亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this extended abstract, we discuss the opportunity to formally verify that inference systems for probabilistic programming guarantee good performance. In particular, we focus on hybrid inference systems that combine exact and approximate inference to try to exploit the advantages of each. Their performance depends critically on a) the division between exact and approximate inference, and b) the computational resources consumed by exact inference. We describe several projects in this direction. Semi-symbolic Inference (SSI) is a type of hybrid inference system that provides limited guarantees by construction on the exact/approximate division. In addition to these limited guarantees, we also describe ongoing work to extend guarantees to a more complex class of programs, requiring a program analysis to ensure the guarantees. Finally, we also describe work on verifying that inference systems using delayed sampling -- another type of hybrid inference -- execute in bounded memory. Together, these projects show that verification can deliver the performance guarantees that probabilistic programming languages need.

相關內容

We provide a method, based on automata theory, to mechanically prove the correctness of many numeration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs of correctness can be replaced by simply constructing a regular expression (or finite automaton) specifying the rules for valid representations, followed by a short computation. Examples of the systems that can be handled using our technique include Brown's lazy representation (1965), the far-difference representation developed by Alpert (2009), and three representations proposed by Hajnal (2023). We also provide three additional systems and prove their validity.

Machine learning (ML) models are known to be vulnerable to a number of attacks that target the integrity of their predictions or the privacy of their training data. To carry out these attacks, a black-box adversary must typically possess the ability to query the model and observe its outputs (e.g., labels). In this work, we demonstrate, for the first time, the ability to enhance such decision-based attacks. To accomplish this, we present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack. The leakage of inference-state elements into algorithmic timing side channels has never been studied before, and we have found that it can contain rich information that facilitates superior timing attacks that significantly outperform attacks based solely on label outputs. In a case study, we investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors. In our examination of the timing side-channel vulnerabilities associated with this algorithm, we identified the potential to enhance decision-based attacks. We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference. Our experiments show that our adversarial examples exhibit superior perturbation quality compared to a decision-based attack. In addition, we present a new threat model in which dataset inference based solely on timing leakage is performed. To address the timing leakage vulnerability inherent in the NMS algorithm, we explore the potential and limitations of implementing constant-time inference passes as a mitigation strategy.

There have been recent advances in the analysis and visualization of 3D symmetric tensor fields, with a focus on the robust extraction of tensor field topology. However, topological features such as degenerate curves and neutral surfaces do not live in isolation. Instead, they intriguingly interact with each other. In this paper, we introduce the notion of {\em topological graph} for 3D symmetric tensor fields to facilitate global topological analysis of such fields. The nodes of the graph include degenerate curves and regions bounded by neutral surfaces in the domain. The edges in the graph denote the adjacency information between the regions and degenerate curves. In addition, we observe that a degenerate curve can be a loop and even a knot and that two degenerate curves (whether in the same region or not) can form a link. We provide a definition and theoretical analysis of individual degenerate curves in order to help understand why knots and links may occur. Moreover, we differentiate between wedges and trisectors, thus making the analysis more detailed about degenerate curves. We incorporate this information into the topological graph. Such a graph can not only reveal the global structure in a 3D symmetric tensor field but also allow two symmetric tensor fields to be compared. We demonstrate our approach by applying it to solid mechanics and material science data sets.

We present an exact approach to analyze and quantify the sensitivity of higher moments of probabilistic loops with symbolic parameters, polynomial arithmetic and potentially uncountable state spaces. Our approach integrates methods from symbolic computation, probability theory, and static analysis in order to automatically capture sensitivity information about probabilistic loops. Sensitivity information allows us to formally establish how value distributions of probabilistic loop variables influence the functional behavior of loops, which can in particular be helpful when choosing values of loop variables in order to ensure efficient/expected computations. Our work uses algebraic techniques to model higher moments of loop variables via linear recurrence equations and introduce the notion of sensitivity recurrences. We show that sensitivity recurrences precisely model loop sensitivities, even in cases where the moments of loop variables do not satisfy a system of linear recurrences. As such, we enlarge the class of probabilistic loops for which sensitivity analysis was so far feasible. We demonstrate the success of our approach while analyzing the sensitivities of probabilistic loops.

Understanding variable dependence, particularly eliciting their statistical properties given a set of covariates, provides the mathematical foundation in practical operations management such as risk analysis and decision-making given observed circumstances. This article presents an estimation method for modeling the conditional joint distribution of bivariate outcomes based on the distribution regression and factorization methods. This method is considered semiparametric in that it allows for flexible modeling of both the marginal and joint distributions conditional on covariates without imposing global parametric assumptions across the entire distribution. In contrast to existing parametric approaches, our method can accommodate discrete, continuous, or mixed variables, and provides a simple yet effective way to capture distributional dependence structures between bivariate outcomes and covariates. Various simulation results confirm that our method can perform similarly or better in finite samples compared to the alternative methods. In an application to the study of a motor third-party liability insurance portfolio, the proposed method effectively estimates risk measures such as the conditional Value-at-Risk and Expected Shortfall. This result suggests that this semiparametric approach can serve as an alternative in insurance risk management.

Collective perception is a foundational problem in swarm robotics, in which the swarm must reach consensus on a coherent representation of the environment. An important variant of collective perception casts it as a best-of-$n$ decision-making process, in which the swarm must identify the most likely representation out of a set of alternatives. Past work on this variant primarily focused on characterizing how different algorithms navigate the speed-vs-accuracy tradeoff in a scenario where the swarm must decide on the most frequent environmental feature. Crucially, past work on best-of-$n$ decision-making assumes the robot sensors to be perfect (noise- and fault-less), limiting the real-world applicability of these algorithms. In this paper, we derive from first principles an optimal, probabilistic framework for minimalistic swarm robots equipped with flawed sensors. Then, we validate our approach in a scenario where the swarm collectively decides the frequency of a certain environmental feature. We study the speed and accuracy of the decision-making process with respect to several parameters of interest. Our approach can provide timely and accurate frequency estimates even in presence of severe sensory noise.

Popularity bias is a widespread problem in the field of recommender systems, where popular items tend to dominate recommendation results. In this work, we propose 'Test Time Embedding Normalization' as a simple yet effective strategy for mitigating popularity bias, which surpasses the performance of the previous mitigation approaches by a significant margin. Our approach utilizes the normalized item embedding during the inference stage to control the influence of embedding magnitude, which is highly correlated with item popularity. Through extensive experiments, we show that our method combined with the sampled softmax loss effectively reduces popularity bias compare to previous approaches for bias mitigation. We further investigate the relationship between user and item embeddings and find that the angular similarity between embeddings distinguishes preferable and non-preferable items regardless of their popularity. The analysis explains the mechanism behind the success of our approach in eliminating the impact of popularity bias. Our code is available at //github.com/ml-postech/TTEN.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司