亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on the construction and analysis of explicit numerical methods of high dimensional stochastic nonlinear Schrodinger equations (SNLSEs). We first prove that the classical explicit numerical methods are unstable and suffer from the numerical divergence phenomenon. Then we propose a kind of explicit splitting numerical methods and prove that the structure-preserving splitting strategy is able to enhance the numerical stability. Furthermore, we establish the regularity analysis and strong convergence analysis of the proposed schemes for SNLSEs based on two key ingredients. One ingredient is proving new regularity estimates of SNLSEs by constructing a logarithmic auxiliary functional and exploiting the Bourgain space. Another one is providing a dedicated error decomposition formula and a novel truncated stochastic Gronwall's lemma, which relies on the tail estimates of underlying stochastic processes. In particular, our result answers the strong convergence problem of numerical methods for 2D SNLSEs emerged from [C. Chen, J. Hong and A. Prohl, Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016), no. 2, 274-318] and [J. Cui and J. Hong, SIAM J. Numer. Anal. 56 (2018), no. 4, 2045-2069].

相關內容

We propose approximate gradient ascent algorithms for risk-sensitive reinforcement learning control problem in on-policy as well as off-policy settings. We consider episodic Markov decision processes, and model the risk using distortion risk measure (DRM) of the cumulative discounted reward. Our algorithms estimate the DRM using order statistics of the cumulative rewards, and calculate approximate gradients from the DRM estimates using a smoothed functional-based gradient estimation scheme. We derive non-asymptotic bounds that establish the convergence of our proposed algorithms to an approximate stationary point of the DRM objective.

The analysis of structure-preserving numerical methods for the Poisson--Nernst--Planck (PNP) system has attracted growing interests in recent years. In this work, we provide an optimal rate convergence analysis and error estimate for finite difference schemes based on the Slotboom reformulation. Different options of mobility average at the staggered mesh points are considered in the finite-difference spatial discretization, such as the harmonic mean, geometric mean, arithmetic mean, and entropic mean. A semi-implicit temporal discretization is applied, which in turn results in a non-constant coefficient, positive-definite linear system at each time step. A higher order asymptotic expansion is applied in the consistency analysis, and such a higher order consistency estimate is necessary to control the discrete maximum norm of the concentration variables. In convergence estimate, the harmonic mean for the mobility average, which turns out to bring lots of convenience in the theoretical analysis, is taken for simplicity, while other options of mobility average would also lead to the desired error estimate, with more technical details involved. As a result, an optimal rate convergence analysis on concentrations, electric potential, and ionic fluxes is derived, which is the first such results for the structure-preserving numerical schemes based on the Slotboom reformulation. It is remarked that the convergence analysis leads to a theoretical justification of the conditional energy dissipation analysis, which relies on the maximum norm bounds of the concentration and the gradient of the electric potential. Some numerical results are also presented to demonstrate the accuracy and structure-preserving performance of the associated schemes.

We consider a semi-discrete finite volume scheme for a degenerate fractional conservation laws driven by a cylindrical Wiener process. Making use of the bounded variation (BV) estimates, Young measure theory, and a clever adaptation of classical Kruzkov theory, we provide estimates on the rate of convergence for approximate solutions to fractional problems. The main difficulty stems from the degenerate fractional operator, and requires a significant departure from the existing strategy to establish Kato's type of inequality. Finally, as an application of this theory, we demonstrate numerical convergence rates.

This paper presents a new parameter free partially penalized immersed finite element method and convergence analysis for solving second order elliptic interface problems. A lifting operator is introduced on interface edges to ensure the coercivity of the method without requiring an ad-hoc stabilization parameter. The optimal approximation capabilities of the immersed finite element space is proved via a novel new approach that is much simpler than that in the literature. A new trace inequality which is necessary to prove the optimal convergence of immersed finite element methods is established on interface elements. Optimal error estimates are derived rigorously with the constant independent of the interface location relative to the mesh. The new method and analysis have also been extended to variable coefficients and three-dimensional problems. Numerical examples are also provided to confirm the theoretical analysis and efficiency of the new method.

Evolutionary strategies have recently been shown to achieve competing levels of performance for complex optimization problems in reinforcement learning. In such problems, one often needs to optimize an objective function subject to a set of constraints, including for instance constraints on the entropy of a policy or to restrict the possible set of actions or states accessible to an agent. Convergence guarantees for evolutionary strategies to optimize stochastic constrained problems are however lacking in the literature. In this work, we address this problem by designing a novel optimization algorithm with a sufficient decrease mechanism that ensures convergence and that is based only on estimates of the functions. We demonstrate the applicability of this algorithm on two types of experiments: i) a control task for maximizing rewards and ii) maximizing rewards subject to a non-relaxable set of constraints.

In this paper, we present convergence analysis of high-order finite element based methods, in particular, we focus on a discontinuous Galerkin scheme using summation-by-parts operators. To this end, it is crucial that structure preserving properties, such as positivity preservation and entropy inequality hold. We demonstrate how to ensure them and prove the convergence of our multidimensional high-order DG scheme via dissipative weak solutions. In numerical simulations, we verify our theoretical results.

Time efficiency is one of the more critical concerns in computational fluid dynamics simulations of industrial applications. Extensive research has been conducted to improve the underlying numerical schemes to achieve time process reduction. Within this context, this paper presents a new time discretization method based on the Adomian decomposition technique for Euler equations. The obtained scheme is time-order adaptive; the order is automatically adjusted at each time step and over the space domain, leading to significant processing time reduction. The scheme is formulated in an appropriate recursive formula, and its efficiency is demonstrated through numerical tests by comparison to exact solutions and the popular Runge-Kutta-DG method.

The optimistic gradient method has seen increasing popularity as an efficient first-order method for solving convex-concave saddle point problems. To analyze its iteration complexity, a recent work [arXiv:1901.08511] proposed an interesting perspective that interprets the optimistic gradient method as an approximation to the proximal point method. In this paper, we follow this approach and distill the underlying idea of optimism to propose a generalized optimistic method, which encompasses the optimistic gradient method as a special case. Our general framework can handle constrained saddle point problems with composite objective functions and can work with arbitrary norms with compatible Bregman distances. Moreover, we also develop an adaptive line search scheme to select the stepsizes without knowledge of the smoothness coefficients. We instantiate our method with first-order, second-order and higher-order oracles and give sharp global iteration complexity bounds. When the objective function is convex-concave, we show that the averaged iterates of our $p$-th-order method ($p\geq 1$) converge at a rate of $\mathcal{O}(1/N^\frac{p+1}{2})$. When the objective function is further strongly-convex-strongly-concave, we prove a complexity bound of $\mathcal{O}(\frac{L_1}{\mu}\log\frac{1}{\epsilon})$ for our first-order method and a bound of $\mathcal{O}((L_p D^\frac{p-1}{2}/\mu)^{\frac{2}{p+1}}+\log\log\frac{1}{\epsilon})$ for our $p$-th-order method ($p\geq 2$) respectively, where $L_p$ ($p\geq 1$) is the Lipschitz constant of the $p$-th-order derivative, $\mu$ is the strongly-convex parameter, and $D$ is the initial Bregman distance to the saddle point. Moreover, our line search scheme provably only requires an almost constant number of calls to a subproblem solver per iteration on average, making our first-order and second-order methods particularly amenable to implementation.

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.

In this paper we study the frequentist convergence rate for the Latent Dirichlet Allocation (Blei et al., 2003) topic models. We show that the maximum likelihood estimator converges to one of the finitely many equivalent parameters in Wasserstein's distance metric at a rate of $n^{-1/4}$ without assuming separability or non-degeneracy of the underlying topics and/or the existence of more than three words per document, thus generalizing the previous works of Anandkumar et al. (2012, 2014) from an information-theoretical perspective. We also show that the $n^{-1/4}$ convergence rate is optimal in the worst case.

北京阿比特科技有限公司