亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Linear Recurrence Sequences (LRS) are a fundamental mathematical primitive for a plethora of applications such as model checking, probabilistic systems, computational biology, and economics. Positivity (are all terms of the given LRS at least 0?) and Ultimate Positivity (are all but finitely many terms of the given LRS at least 0?) are important open number-theoretic decision problems. Recently, the robust versions of these problems, that ask whether the LRS is (Ultimately) Positive despite small perturbations to its initialisation, have gained attention as a means to model the imprecision that arises in practical settings. In this paper, we consider Robust Positivity and Ultimate Positivity problems where the neighbourhood of the initialisation, specified in a natural and general format, is also part of the input. We contribute by proving sharp decidability results: decision procedures at orders our techniques can't handle would entail significant number-theoretic breakthroughs.

相關內容

We consider a symmetric mixture of linear regressions with random samples from the pairwise comparison design, which can be seen as a noisy version of a type of Euclidean distance geometry problem. We analyze the expectation-maximization (EM) algorithm locally around the ground truth and establish that the sequence converges linearly, providing an $\ell_\infty$-norm guarantee on the estimation error of the iterates. Furthermore, we show that the limit of the EM sequence achieves the sharp rate of estimation in the $\ell_2$-norm, matching the information-theoretically optimal constant. We also argue through simulation that convergence from a random initialization is much more delicate in this setting, and does not appear to occur in general. Our results show that the EM algorithm can exhibit several unique behaviors when the covariate distribution is suitably structured.

The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. Bravyi and Gosset showed that the approximate stabilizer rank of a so-called "magic" state like $|T\rangle^{\otimes n}$, up to polynomial factors, is an upper bound on the number of classical operations required to simulate an arbitrary quantum circuit with Clifford gates and $n$ number of $T$ gates. As a result, an exponential lower bound on this quantity seems inevitable. Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the "exact" rank of ${|T\rangle}^{\otimes n}$, meaning the minimal size of a decomposition that exactly produces the state. For the "approximate" rank, which is more realistically related to the cost of simulating quantum circuits, no lower bound better than $\tilde \Omega(\sqrt n)$ has been known. In this paper, we improve the lower bound on the approximate rank to $\tilde \Omega (n^2)$ for a wide range of the approximation parameters. An immediate corollary of our result is the existence of polynomial time computable functions which require a super-linear number of terms in any decomposition into exponentials of quadratic forms over $\mathbb{F}_2$, resolving a question in [Wil18]. Our approach is based on a strong lower bound on the approximate rank of a quantum state sampled from the Haar measure, a step-by-step analysis of the approximate rank of a magic-state teleportation protocol to sample from the Haar measure, and a result about trading Clifford operations with $T$ gates by [LKS18].

Interpreting the inner function of neural networks is crucial for the trustworthy development and deployment of these black-box models. Prior interpretability methods focus on correlation-based measures to attribute model decisions to individual examples. However, these measures are susceptible to noise and spurious correlations encoded in the model during the training phase (e.g., biased inputs, model overfitting, or misspecification). Moreover, this process has proven to result in noisy and unstable attributions that prevent any transparent understanding of the model's behavior. In this paper, we develop a robust interventional-based method grounded by causal analysis to capture cause-effect mechanisms in pre-trained neural networks and their relation to the prediction. Our novel approach relies on path interventions to infer the causal mechanisms within hidden layers and isolate relevant and necessary information (to model prediction), avoiding noisy ones. The result is task-specific causal explanatory graphs that can audit model behavior and express the actual causes underlying its performance. We apply our method to vision models trained on classification tasks. On image classification tasks, we provide extensive quantitative experiments to show that our approach can capture more stable and faithful explanations than standard attribution-based methods. Furthermore, the underlying causal graphs reveal the neural interactions in the model, making it a valuable tool in other applications (e.g., model repair).

In a broad class of reinforcement learning applications, stochastic rewards have heavy-tailed distributions, which lead to infinite second-order moments for stochastic (semi)gradients in policy evaluation and direct policy optimization. In such instances, the existing RL methods may fail miserably due to frequent statistical outliers. In this work, we establish that temporal difference (TD) learning with a dynamic gradient clipping mechanism, and correspondingly operated natural actor-critic (NAC), can be provably robustified against heavy-tailed reward distributions. It is shown in the framework of linear function approximation that a favorable tradeoff between bias and variability of the stochastic gradients can be achieved with this dynamic gradient clipping mechanism. In particular, we prove that robust versions of TD learning achieve sample complexities of order $\mathcal{O}(\varepsilon^{-\frac{1}{p}})$ and $\mathcal{O}(\varepsilon^{-1-\frac{1}{p}})$ with and without the full-rank assumption on the feature matrix, respectively, under heavy-tailed rewards with finite moments of order $(1+p)$ for some $p\in(0,1]$, both in expectation and with high probability. We show that a robust variant of NAC based on Robust TD learning achieves $\tilde{\mathcal{O}}(\varepsilon^{-4-\frac{2}{p}})$ sample complexity. We corroborate our theoretical results with numerical experiments.

Variational regularization is commonly used to solve linear inverse problems, and involves augmenting a data fidelity by a regularizer. The regularizer is used to promote a priori information, and is weighted by a regularization parameter. Selection of an appropriate regularization parameter is critical, with various choices leading to very different reconstructions. Existing strategies such as the discrepancy principle and L-curve can be used to determine a suitable parameter value, but in recent years a supervised machine learning approach called bilevel learning has been employed. Bilevel learning is a powerful framework to determine optimal parameters, and involves solving a nested optimisation problem. While previous strategies enjoy various theoretical results, the well-posedness of bilevel learning in this setting is still a developing field. One necessary property is positivity of the determined regularization parameter. In this work, we provide a new condition that better characterises positivity of optimal regularization parameters than the existing theory. Numerical results verify and explore this new condition for both small and large dimensional problems.

Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.

This paper considers a single-trajectory system identification problem for linear systems under general nonlinear and/or time-varying policies with i.i.d. random excitation noises. The problem is motivated by safe learning-based control for constrained linear systems, where the safe policies during the learning process are usually nonlinear and time-varying for satisfying the state and input constraints. In this paper, we provide a non-asymptotic error bound for least square estimation when the data trajectory is generated by any nonlinear and/or time-varying policies as long as the generated state and action trajectories are bounded. This significantly generalizes the existing non-asymptotic guarantees for linear system identification, which usually consider i.i.d. random inputs or linear policies. Interestingly, our error bound is consistent with that for linear policies with respect to the dependence on the trajectory length, system dimensions, and excitation levels. Lastly, we demonstrate the applications of our results by safe learning with robust model predictive control and provide numerical analysis.

Rationality is often related to optimal decision making. Humans are known to be bounded rational agents. However, recent advances in computing, and other scientific and technical fields along with large amount of data have led to a feeling that this could result in extending the limits of bounded rationality in humans through augmented machine intelligence. In this paper, results from a computational model show that as more agents reach global optimality, faster with enhanced computing, etc., solving the same problem independently, this leads to accelerated "tragedy of the commons" due to quicker resource consumption. Thus, bounded rationality could be seen as blessing in disguise (providing diversity to solutions for the same problem) from sustainability standpoint.

Learning interpretable representations of neural dynamics at a population level is a crucial first step to understanding how observed neural activity relates to perception and behavior. Models of neural dynamics often focus on either low-dimensional projections of neural activity, or on learning dynamical systems that explicitly relate to the neural state over time. We discuss how these two approaches are interrelated by considering dynamical systems as representative of flows on a low-dimensional manifold. Building on this concept, we propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data as a sparse combination of simpler, more interpretable components. Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time. The decomposed nature of the dynamics is more expressive than previous switched approaches for a given number of parameters and enables modeling of overlapping and non-stationary dynamics. In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system, learn efficient representations, and capture smooth transitions between dynamical modes, focusing on intuitive low-dimensional non-stationary linear and nonlinear systems. Furthermore, we highlight our model's ability to efficiently capture and demix population dynamics generated from multiple independent subnetworks, a task that is computationally impractical for switched models. Finally, we apply our model to neural "full brain" recordings of C. elegans data, illustrating a diversity of dynamics that is obscured when classified into discrete states.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司