亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present \moniker{}, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional approaches that critically rely on intersection-free inputs, \moniker{} robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits. The technical core of \moniker{} is a novel intersection contour loss that penalizes interpenetrations and encourages rapid resolution thereof. We integrate our intersection loss with a collision-avoiding repulsion objective into a neural cloth simulation method based on graph neural networks (GNNs). We demonstrate our method's ability across a challenging set of diverse multi-layer outfits under dynamic human motions. Our extensive analysis indicates that \moniker{} significantly improves collision handling for learned simulation and produces visually compelling results.

相關內容

Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup.

Digital quantum simulation has broad applications in approximating unitary evolution of Hamiltonians. In practice, many simulation tasks for quantum systems focus on quantum states in the low-energy subspace instead of the entire Hilbert space. In this paper, we systematically investigate the complexity of digital quantum simulation based on product formulas in the low-energy subspace. We show that the simulation error depends on the effective low-energy norm of the Hamiltonian for a variety of digital quantum simulation algorithms and quantum systems, allowing improvements over the previous complexities for full unitary simulations even for imperfect state preparations {due to thermalization}. In particular, for simulating spin models in the low-energy subspace, we prove that randomized product formulas such as qDRIFT and random permutation require smaller Trotter numbers. Such improvement also persists in symmetry-protected digital quantum simulations. We prove a similar improvement in simulating the dynamics of power-law quantum interactions. We also provide a query lower bound for general digital quantum simulations in the low-energy subspace.

Scene flow estimation predicts the 3D motion at each point in successive LiDAR scans. This detailed, point-level, information can help autonomous vehicles to accurately predict and understand dynamic changes in their surroundings. Current state-of-the-art methods require annotated data to train scene flow networks and the expense of labeling inherently limits their scalability. Self-supervised approaches can overcome the above limitations, yet face two principal challenges that hinder optimal performance: point distribution imbalance and disregard for object-level motion constraints. In this paper, we propose SeFlow, a self-supervised method that integrates efficient dynamic classification into a learning-based scene flow pipeline. We demonstrate that classifying static and dynamic points helps design targeted objective functions for different motion patterns. We also emphasize the importance of internal cluster consistency and correct object point association to refine the scene flow estimation, in particular on object details. Our real-time capable method achieves state-of-the-art performance on the self-supervised scene flow task on Argoverse 2 and Waymo datasets. The code is open-sourced at //github.com/KTH-RPL/SeFlow along with trained model weights.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司