亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores the challenges of implementing Federated Learning (FL) in practical scenarios featuring isolated nodes with data heterogeneity, which can only be connected to the server through wireless links in an infrastructure-less environment. To overcome these challenges, we propose a novel mobilizing personalized FL approach, which aims to facilitate mobility and resilience. Specifically, we develop a novel optimization algorithm called Random Walk Stochastic Alternating Direction Method of Multipliers (RWSADMM). RWSADMM capitalizes on the server's random movement toward clients and formulates local proximity among their adjacent clients based on hard inequality constraints rather than requiring consensus updates or introducing bias via regularization methods. To mitigate the computational burden on the clients, an efficient stochastic solver of the approximated optimization problem is designed in RWSADMM, which provably converges to the stationary point almost surely in expectation. Our theoretical and empirical results demonstrate the provable fast convergence and substantial accuracy improvements achieved by RWSADMM compared to baseline methods, along with its benefits of reduced communication costs and enhanced scalability.

相關內容

This work proposes a geometric insight into equivariant message passing on Riemannian manifolds. As previously proposed, numerical features on Riemannian manifolds are represented as coordinate-independent feature fields on the manifold. To any coordinate-independent feature field on a manifold comes attached an equivariant embedding of the principal bundle to the space of numerical features. We argue that the metric this embedding induces on the numerical feature space should optimally preserve the principal bundle's original metric. This optimality criterion leads to the minimization of a twisted form of the Polyakov action with respect to the graph of this embedding, yielding an equivariant diffusion process on the associated vector bundle. We obtain a message passing scheme on the manifold by discretizing the diffusion equation flow for a fixed time step. We propose a higher-order equivariant diffusion process equivalent to diffusion on the cartesian product of the base manifold. The discretization of the higher-order diffusion process on a graph yields a new general class of equivariant GNN, generalizing the ACE and MACE formalism to data on Riemannian manifolds.

This paper aims to explore the potential of combining Deep Reinforcement Learning (DRL) with Knowledge Distillation (KD) by distilling various DRL algorithms and studying their distillation effects. By doing so, the computational burden of deep models could be reduced while maintaining the performance. The primary objective is to provide a benchmark for evaluating the performance of different DRL algorithms that have been refined using KD techniques. By distilling these algorithms, the goal is to develop efficient and fast DRL models. This research is expected to provide valuable insights that can facilitate further advancements in this promising direction. By exploring the combination of DRL and KD, this work aims to promote the development of models that require fewer GPU resources, learn more quickly, and make faster decisions in complex environments. The results of this research have the capacity to significantly advance the field of DRL and pave the way for the future deployment of resource-efficient, decision-making intelligent systems.

This paper considers the problem of recovering signals modeled by generative models from linear measurements contaminated with sparse outliers. We propose an outlier detection approach for reconstructing the ground-truth signals modeled by generative models under sparse outliers. We establish theoretical recovery guarantees for reconstruction of signals using generative models in the presence of outliers, giving lower bounds on the number of correctable outliers. Our results are applicable to both linear generator neural networks and the nonlinear generator neural networks with an arbitrary number of layers. We propose an iterative alternating direction method of multipliers (ADMM) algorithm for solving the outlier detection problem via $\ell_1$ norm minimization, and a gradient descent algorithm for solving the outlier detection problem via squared $\ell_1$ norm minimization. We conduct extensive experiments using variational auto-encoder and deep convolutional generative adversarial networks, and the experimental results show that the signals can be successfully reconstructed under outliers using our approach. Our approach outperforms the traditional Lasso and $\ell_2$ minimization approach.

Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.

Tensor-valued data arise frequently from a wide variety of scientific applications, and many among them can be translated into an alteration detection problem of tensor dependence structures. In this article, we formulate the problem under the popularly adopted tensor-normal distributions and aim at two-sample correlation/partial correlation comparisons of tensor-valued observations. Through decorrelation and centralization, a separable covariance structure is employed to pool sample information from different tensor modes to enhance the power of the test. Additionally, we propose a novel Sparsity-Exploited Reranking Algorithm (SERA) to further improve the multiple testing efficiency. The algorithm is approached through reranking of the p-values derived from the primary test statistics, by incorporating a carefully constructed auxiliary tensor sequence. Besides the tensor framework, SERA is also generally applicable to a wide range of two-sample large-scale inference problems with sparsity structures, and is of independent interest. The asymptotic properties of the proposed test are derived and the algorithm is shown to control the false discovery at the pre-specified level. We demonstrate the efficacy of the proposed method through intensive simulations and two scientific applications.

Domain experts increasingly use automated data science tools to incorporate machine learning (ML) models in their work but struggle to "debug" these models when they are incorrect. For these experts, semantic interactions can provide an accessible avenue to guide and refine ML models without having to programmatically dive into its technical details. In this research, we conduct an elicitation study using data and visual design probes to examine if and how experts with a spectrum of ML expertise use semantic interactions to update a simple classification model. We use our design probes to facilitate an interactive dialogue with 20 participants and codify their interactions as a set of target-interaction pairs. Interestingly, our findings revealed that many targets of semantic interactions do not directly map to ML model parameters, but instead aim to augment the data a model uses for training. We also identify reasons that participants would hesitate to interact with ML models, including burdens of cognitive load and concerns of injecting bias. Unexpectedly participants also saw the value of using semantic interactions to work collaboratively with members of their team. Participants with less ML expertise found this to be a useful mechanism for communicating their concerns to ML experts. This was an especially important observation, as our study also shows the different needs that correspond to diverse ML expertise. Collectively, we demonstrate that design probes are effective tools for proactively gathering the affordances that should be offered in an interactive machine learning system.

This paper introduces a Factor Augmented Sparse Throughput (FAST) model that utilizes both latent factors and sparse idiosyncratic components for nonparametric regression. The FAST model bridges factor models on one end and sparse nonparametric models on the other end. It encompasses structured nonparametric models such as factor augmented additive models and sparse low-dimensional nonparametric interaction models and covers the cases where the covariates do not admit factor structures. Via diversified projections as estimation of latent factor space, we employ truncated deep ReLU networks to nonparametric factor regression without regularization and to a more general FAST model using nonconvex regularization, resulting in factor augmented regression using neural network (FAR-NN) and FAST-NN estimators respectively. We show that FAR-NN and FAST-NN estimators adapt to the unknown low-dimensional structure using hierarchical composition models in nonasymptotic minimax rates. We also study statistical learning for the factor augmented sparse additive model using a more specific neural network architecture. Our results are applicable to the weak dependent cases without factor structures. In proving the main technical result for FAST-NN, we establish a new deep ReLU network approximation result that contributes to the foundation of neural network theory. Our theory and methods are further supported by simulation studies and an application to macroeconomic data.

Aiming at expanding few-shot relations' coverage in knowledge graphs (KGs), few-shot knowledge graph completion (FKGC) has recently gained more research interests. Some existing models employ a few-shot relation's multi-hop neighbor information to enhance its semantic representation. However, noise neighbor information might be amplified when the neighborhood is excessively sparse and no neighbor is available to represent the few-shot relation. Moreover, modeling and inferring complex relations of one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N) by previous knowledge graph completion approaches requires high model complexity and a large amount of training instances. Thus, inferring complex relations in the few-shot scenario is difficult for FKGC models due to limited training instances. In this paper, we propose a few-shot relational learning with global-local framework to address the above issues. At the global stage, a novel gated and attentive neighbor aggregator is built for accurately integrating the semantics of a few-shot relation's neighborhood, which helps filtering the noise neighbors even if a KG contains extremely sparse neighborhoods. For the local stage, a meta-learning based TransH (MTransH) method is designed to model complex relations and train our model in a few-shot learning fashion. Extensive experiments show that our model outperforms the state-of-the-art FKGC approaches on the frequently-used benchmark datasets NELL-One and Wiki-One. Compared with the strong baseline model MetaR, our model achieves 5-shot FKGC performance improvements of 8.0% on NELL-One and 2.8% on Wiki-One by the metric Hits@10.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司