亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our study demonstrates the effective use of Large Language Models (LLMs) for automating the classification of complex datasets. We specifically target proposals of Decentralized Autonomous Organizations (DAOs), as the classification of this data requires the understanding of context and, therefore, depends on human expertise, leading to high costs associated with the task. The study applies an iterative approach to specify categories and further refine them and the prompt in each iteration, which led to an accuracy rate of 95% in classifying a set of 100 proposals. With this, we demonstrate the potential of LLMs to automate data labeling tasks that depend on textual context effectively.

相關內容

We study existing approaches to leverage off-the-shelf Natural Language Inference (NLI) models for the evaluation of summary faithfulness and argue that these are sub-optimal due to the granularity level considered for premises and hypotheses. That is, the smaller content unit considered as hypothesis is a sentence and premises are made up of a fixed number of document sentences. We propose a novel approach, namely InFusE, that uses a variable premise size and simplifies summary sentences into shorter hypotheses. Departing from previous studies which focus on single short document summarisation, we analyse NLI based faithfulness evaluation for diverse summarisation tasks. We introduce DiverSumm, a new benchmark comprising long form summarisation (long documents and summaries) and diverse summarisation tasks (e.g., meeting and multi-document summarisation). In experiments, InFusE obtains superior performance across the different summarisation tasks. Our code and data are available at //github.com/HJZnlp/infuse.

The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of more than 100k tokens without continual training. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of finetuned models. When compared with proprietary models, our training-free 70B model attains 94% of the performance of gpt-3.5-16k, indicating it is a viable open-source alternative. All code and data used in this work are released at \url{//github.com/HKUNLP/ChunkLlama}.

The aim of the study is to investigate the complex mechanisms of speech perception and ultimately decode the electrical changes in the brain accruing while listening to speech. We attempt to decode heard speech from intracranial electroencephalographic (iEEG) data using deep learning methods. The goal is to aid the advancement of brain-computer interface (BCI) technology for speech synthesis, and, hopefully, to provide an additional perspective on the cognitive processes of speech perception. This approach diverges from the conventional focus on speech production and instead chooses to investigate neural representations of perceived speech. This angle opened up a complex perspective, potentially allowing us to study more sophisticated neural patterns. Leveraging the power of deep learning models, the research aimed to establish a connection between these intricate neural activities and the corresponding speech sounds. Despite the approach not having achieved a breakthrough yet, the research sheds light on the potential of decoding neural activity during speech perception. Our current efforts can serve as a foundation, and we are optimistic about the potential of expanding and improving upon this work to move closer towards more advanced BCIs, better understanding of processes underlying perceived speech and its relation to spoken speech.

Since the advent of Deep Learning (DL), Speech Enhancement (SE) models have performed well under a variety of noise conditions. However, such systems may still introduce sonic artefacts, sound unnatural, and restrict the ability for a user to hear ambient sound which may be of importance. Hearing Aid (HA) users may wish to customise their SE systems to suit their personal preferences and day-to-day lifestyle. In this paper, we introduce a preference learning based SE (PLSE) model for future multi-modal HAs that can contextually exploit audio information to improve listening comfort, based upon the preferences of the user. The proposed system estimates the Signal-to-noise ratio (SNR) as a basic objective speech quality measure which quantifies the relative amount of background noise present in speech, and directly correlates to the intelligibility of the signal. Additionally, to provide contextual information we predict the acoustic scene in which the user is situated. These tasks are achieved via a multi-task DL model, which surpasses the performance of inferring the acoustic scene or SNR separately, by jointly leveraging a shared encoded feature space. These environmental inferences are exploited in a preference elicitation framework, which linearly learns a set of predictive functions to determine the target SNR of an AV (Audio-Visual) SE system. By greatly reducing noise in challenging listening conditions, and by novelly scaling the output of the SE model, we are able to provide HA users with contextually individualised SE. Preliminary results suggest an improvement over the non-individualised baseline model in some participants.

Bilingual Lexicon Induction (BLI) is a core task in multilingual NLP that still, to a large extent, relies on calculating cross-lingual word representations. Inspired by the global paradigm shift in NLP towards Large Language Models (LLMs), we examine the potential of the latest generation of LLMs for the development of bilingual lexicons. We ask the following research question: Is it possible to prompt and fine-tune multilingual LLMs (mLLMs) for BLI, and how does this approach compare against and complement current BLI approaches? To this end, we systematically study 1) zero-shot prompting for unsupervised BLI and 2) few-shot in-context prompting with a set of seed translation pairs, both without any LLM fine-tuning, as well as 3) standard BLI-oriented fine-tuning of smaller LLMs. We experiment with 18 open-source text-to-text mLLMs of different sizes (from 0.3B to 13B parameters) on two standard BLI benchmarks covering a range of typologically diverse languages. Our work is the first to demonstrate strong BLI capabilities of text-to-text mLLMs. The results reveal that few-shot prompting with in-context examples from nearest neighbours achieves the best performance, establishing new state-of-the-art BLI scores for many language pairs. We also conduct a series of in-depth analyses and ablation studies, providing more insights on BLI with (m)LLMs, also along with their limitations.

Sequential Monte Carlo (SMC) algorithms represent a suite of robust computational methodologies utilized for state estimation and parameter inference within dynamical systems, particularly in real-time or online environments where data arrives sequentially over time. In this research endeavor, we propose an integrated framework that combines a stochastic epidemic simulator with a sequential importance sampling (SIS) scheme to dynamically infer model parameters, which evolve due to social as well as biological processes throughout the progression of an epidemic outbreak and are also influenced by evolving data measurement bias. Through iterative updates of a set of weighted simulated trajectories based on observed data, this framework enables the estimation of posterior distributions for these parameters, thereby capturing their temporal variability and associated uncertainties. Through simulation studies, we showcase the efficacy of SMC in accurately tracking the evolving dynamics of epidemics while appropriately accounting for uncertainties. Moreover, we delve into practical considerations and challenges inherent in implementing SMC for parameter estimation within dynamic epidemiological settings, areas where the substantial computational capabilities of high-performance computing resources can be usefully brought to bear.

Stein variational gradient descent (SVGD) is a prominent particle-based variational inference method used for sampling a target distribution. SVGD has attracted interest for application in machine-learning techniques such as Bayesian inference. In this paper, we propose novel trainable algorithms that incorporate a deep-learning technique called deep unfolding,into SVGD. This approach facilitates the learning of the internal parameters of SVGD, thereby accelerating its convergence speed. To evaluate the proposed trainable SVGD algorithms, we conducted numerical simulations of three tasks: sampling a one-dimensional Gaussian mixture, performing Bayesian logistic regression, and learning Bayesian neural networks. The results show that our proposed algorithms exhibit faster convergence than the conventional variants of SVGD.

Lexical Simplification (LS) aims to simplify text at the lexical level. Existing methods rely heavily on annotated data, making it challenging to apply in low-resource scenarios. In this paper, we propose a novel LS method without parallel corpora. This method employs an Adversarial Editing System with guidance from a confusion loss and an invariance loss to predict lexical edits in the original sentences. Meanwhile, we introduce an innovative LLM-enhanced loss to enable the distillation of knowledge from Large Language Models (LLMs) into a small-size LS system. From that, complex words within sentences are masked and a Difficulty-aware Filling module is crafted to replace masked positions with simpler words. At last, extensive experimental results and analyses on three benchmark LS datasets demonstrate the effectiveness of our proposed method.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司