Recent advancements in Large Language Models (LLMs) have achieved robust performance across diverse tasks, but fine-tuning these models for specific domains remains resource-intensive. Parameter-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) address this challenge by fine-tuning a small subset of parameters. However, existing methods for fusing multiple LoRAs lack dynamic fusion based on contextual inputs and often increase inference time due to token-level operations. We propose DLP-LoRA, a Dynamic Lightweight Plugin that employs a mini-MLP module with only 5M parameters to dynamically fuse multiple LoRAs at the sentence level using top-p sampling strategies. This approach reduces inference time to less than twice that of single LoRA inference by leveraging parallel computation. Evaluations across 26 tasks-including multiple-choice questions and question answering-demonstrate that DLP-LoRA achieves an average accuracy of 92.34% on multiple-choice datasets and significant improvements in BLEU and ROUGE scores on QA datasets, outperforming different LLMs backbones under composite task settings. DLP-LoRA effectively balances performance and efficiency, making it a practical solution for dynamic multi-task adaptation in LLMs. Our code is available at //github.com/MeCuping/DLP-LoRA.
Instruction tuning constitutes a prevalent technique for tailoring Large Vision Language Models (LVLMs) to meet individual task requirements. To date, most of the existing approaches are confined to single-task adaptation, whereas the requirements in real-world scenarios are inherently varied and continually evolving. Thus an ideal LVLM should sustain continual instruction tuning in the face of stream-task distributions (i.e., different domains, emerging capabilities, and new datasets) while minimizing the forgetting of previously acquired knowledge. To achieve this, we propose a new benchmark for COntinuAl inStruction Tuning on LVLMs (COAST), which encompasses the aforementioned domain-incremental, capability-incremental, and dataset-incremental configurations. In terms of methodology, we propose Continual LLaVA, a rehearsal-free method tailored for continual instruction tuning in LVLMs. To circumvent the additional overhead associated with experience replay, we freeze LVLMs and construct the dual increment embeddings for each input instruction to facilitate parameter-efficient tuning. Specifically, the increment embeddings can be decomposed into two principal components: 1) intrinsic increment embeddings to encode task-specific characteristics. To achieve this, we set up a low-rank pool containing candidate embeddings, from which we select the relevant ones based on their similarity with the user instructions; 2) contextual increment embeddings to investigate the inter-dependencies across tasks. In this regard, the low-rank embeddings chosen in the previous tasks are aggregated via learnable weighted sum to provide complementary hints. Extensive experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
Classification tasks are typically handled using Machine Learning (ML) models, which lack a balance between accuracy and interpretability. This paper introduces a new approach for classification tasks using Large Language Models (LLMs) in an explainable method. Unlike ML models, which rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a method called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)." The classification is performed by LLMs using a method similar to that used by humans who manually explore and understand the data to decide classifications. In the process of LML, a dataset is summarized and evaluated to determine the features leading to each label the most. In the DAP process, the system uses the data summary and a row of the testing dataset to automatically generate a query to retrieve relevant rows from the dataset for context-aware classification. LML and DAP unlock new possibilities in areas that require explainable and context-aware decisions by ensuring satisfactory accuracy even with complex data. The system scored an accuracy above 90% in some test cases, confirming the effectiveness and potential of the system to outperform ML models in various scenarios. The source code is available at //github.com/Pro-GenAI/LML-DAP
Although rapid advancements in Large Language Models (LLMs) are facilitating the integration of artificial intelligence-based applications and services in healthcare, limited research has focused on the systematic evaluation of medical notes for guideline adherence. This paper introduces GuidelineGuard, an agentic framework powered by LLMs that autonomously analyzes medical notes, such as hospital discharge and office visit notes, to ensure compliance with established healthcare guidelines. By identifying deviations from recommended practices and providing evidence-based suggestions, GuidelineGuard helps clinicians adhere to the latest standards from organizations like the WHO and CDC. This framework offers a novel approach to improving documentation quality and reducing clinical errors.
The rapid advancement of AI technologies, particularly Large Language Models (LLMs), is establishing a new paradigm for Business Intelligence (BI). Despite the emergence of pioneering work in enhancing BI systems with LLMs, we have identified the following three issues when deployed in real industrial scenarios: interaction limitations, performance bottlenecks, and functionality deficiencies. In this paper, we present SiriusBI, an end-to-end business intelligence system that is designed to address the three issues simultaneously. First, we propose an intelligent and application-oriented module called multi-round dialogue with querying, which aims to overcome the prevalent interaction limitations in current BI solutions. Next, to mitigate the performance bottlenecks caused by scenario migration, we introduce two SQL generation methods that strike a balance between accuracy and deployment costs. Finally, to tackle the practical challenges posed by functionality deficiencies, we develop an end-to-end workflow that covers the entire BI process, ensuring that SiriusBI delivers a robust and complete set of functionalities. As an independent cloud service in Tencent's data platform, SiriusBI has been applied across Tencent's finance, advertising, and cloud sectors, providing services to dozens of enterprise clients. Experiments on real-world datasets and practical applications in industrial BI scenarios demonstrate the practicality and effectiveness of SiriusBI. Remarkably, SiriusBI achieves remarkable accuracy rates of 97% in SQL generation for Tencent Finance, 89% for Tencent Advertisement, and 91% for Tencent Cloud.
Head pose estimation (HPE) requires a sophisticated understanding of 3D spatial relationships to generate precise yaw, pitch, and roll angles. Previous HPE models, primarily CNN-based, rely on cropped close-up human head images as inputs and often lack robustness in real-world scenario. Vision Language Models (VLMs) can analyze entire images while focusing on specific objects through their attention mechanisms. In this paper, we propose a novel framework to improve the HPE accuracy by leveraging the object detection grounding capability of a VLM, referred to as CogVLM. We empirically find that directly LoRA fine-tuning of this VLM for the HPE task fails to achieve desirable HPE accuracy, while some model merging methods can improve accuracy but frequently produce blended invalid response formats, struggling to handle both object detection and HPE tasks simultaneously. To integrate HPE capability into CogVLM effectively, we develop a novel LoRA layer-based model merging method. This merging approach applies a high cosine similarity threshold and a winner-takes-all layer selection strategy, aligning attention to the HPE task while preserving original object detection knowledge. It successfully resolves issues with blended invalid response formats and improves accuracy. Results show that our HPE-CogVLM achieves a 31.5\% reduction in Mean Absolute Error over the current state-of-the-art CNN model, 6DRepNet, in cross-dataset evaluation. Furthermore, HPE-CogVLM outperforms both directly LoRA fine-tuned and task arithmetic-based merged VLMs across all HPE metrics.
The rapid advancement of Large Language Models (LLMs) has led to their increased integration into mobile devices for personalized assistance, which enables LLMs to call external API functions to enhance their performance. However, challenges such as data scarcity, ineffective question formatting, and catastrophic forgetting hinder the development of on-device LLM agents. To tackle these issues, we propose Alopex, a framework that enables precise on-device function calls using the Fox LLM. Alopex introduces a logic-based method for generating high-quality training data and a novel ``description-question-output'' format for fine-tuning, reducing risks of function information leakage. Additionally, a data mixing strategy is used to mitigate catastrophic forgetting, combining function call data with textbook datasets to enhance performance in various tasks. Experimental results show that Alopex improves function call accuracy and significantly reduces catastrophic forgetting, providing a robust solution for integrating function call capabilities into LLMs without manual intervention.
Audio-Visual Question Answering (AVQA) is a challenging task that involves answering questions based on both auditory and visual information in videos. A significant challenge is interpreting complex multi-modal scenes, which include both visual objects and sound sources, and connecting them to the given question. In this paper, we introduce the Source-aware Semantic Representation Network (SaSR-Net), a novel model designed for AVQA. SaSR-Net utilizes source-wise learnable tokens to efficiently capture and align audio-visual elements with the corresponding question. It streamlines the fusion of audio and visual information using spatial and temporal attention mechanisms to identify answers in multi-modal scenes. Extensive experiments on the Music-AVQA and AVQA-Yang datasets show that SaSR-Net outperforms state-of-the-art AVQA methods.
We analyze the performance of large intelligent surface (LIS) with hardware distortion at its RX-chains. In particular, we consider the memory-less polynomial model for non-ideal hardware and derive analytical expressions for the signal to noise plus distortion ratio after applying maximum ratio combining (MRC) at the LIS. We also study the effect of back-off and automatic gain control on the RX-chains. The derived expressions enable us to evaluate the scalability of LIS when hardware impairments are present. We also study the cost of assuming ideal hardware by analyzing the minimum scaling required to achieve the same performance with a non-ideal hardware. Then, we exploit the analytical expressions to propose optimized antenna selection schemes for LIS and we show that such schemes can improve the performance significantly. In particular, the antenna selection schemes allow the LIS to have lower number of non-ideal RX-chains for signal reception while maintaining a good performance. We also consider a more practical case where the LIS is deployed as a grid of multi-antenna panels, and we propose panel selection schemes to optimize the complexity-performance trade-offs and improve the system overall efficiency.
The limitations of existing Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) methods lie in their confinement by the closed-environment assumption, hindering their effective and robust handling of unknown target categories in open environments. Open Set Recognition (OSR), a pivotal facet for algorithmic practicality, intends to categorize known classes while denoting unknown ones as "unknown." The chief challenge in OSR involves concurrently mitigating risks associated with generalizing features from a restricted set of known classes to numerous unknown samples and the open space exposure to potential unknown data. To enhance open-set SAR classification, a method called scattering kernel with reciprocal learning network is proposed. Initially, a feature learning framework is constructed based on reciprocal point learning (RPL), establishing a bounded space for potential unknown classes. This approach indirectly introduces unknown information into a learner confined to known classes, thereby acquiring more concise and discriminative representations. Subsequently, considering the variability in the imaging of targets at different angles and the discreteness of components in SAR images, a proposal is made to design convolutional kernels based on large-sized attribute scattering center models. This enhances the ability to extract intrinsic non-linear features and specific scattering characteristics in SAR images, thereby improving the discriminative features of the model and mitigating the impact of imaging variations on classification performance. Experiments on the MSTAR datasets substantiate the superior performance of the proposed approach called ASC-RPL over mainstream methods.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.