亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Investigating how people perceive virtual reality videos in the wild (\ie, those captured by everyday users) is a crucial and challenging task in VR-related applications due to complex \textit{authentic} distortions localized in space and time. Existing panoramic video databases only consider synthetic distortions, assume fixed viewing conditions, and are limited in size. To overcome these shortcomings, we construct the VR Video Quality in the Wild (VRVQW) database, which is one of the first of its kind, and contains $502$ user-generated videos with diverse content and distortion characteristics. Based on VRVQW, we conduct a formal psychophysical experiment to record the scanpaths and perceived quality scores from $139$ participants under two different viewing conditions. We provide a thorough statistical analysis of the recorded data, observing significant impact of viewing conditions on both human scanpaths and perceived quality. Moreover, we develop an objective quality assessment model for VR videos based on pseudocylindrical representation and convolution. Results on the proposed VRVQW show that our method is superior to existing video quality assessment models, only underperforming viewport-based models that otherwise rely on human scanpaths for projection. Last, we explore the additional use of the VRVQW dataset to benchmark saliency detection techniques, highlighting the need for further research. We have made the database and code available at \url{//github.com/limuhit/VR-Video-Quality-in-the-Wild}.

相關內容

 虛擬現實,或虛擬實境(Virtual Reality),簡稱 VR 技術,是指利用電腦模擬產生一個三度空間的虛擬世界,提供使用者關于視覺、聽覺、觸覺等感官的模擬,讓使用者如同身歷其境一般,可以及時、沒有限制地觀察三度空間內的事物。 實際上現在實用的民用VR技術只有帶頭部追蹤功能的頭戴式顯示器,只能有限的勉強模擬視覺感官。近年來火爆的VR就是這個。 VR技術重點在硬件方面,尤其是頭部追蹤技術是重中之重。VR必須要結合硬件與軟件一起使用。和大多數人想象的不同,VR在軟件方面實現起來簡單,幾乎只需要很少的一點代碼即可實現。

ChatGPT is a large language model developed by OpenAI. Despite its impressive performance across various tasks, no prior work has investigated its capability in the biomedical domain yet. To this end, this paper aims to evaluate the performance of ChatGPT on various benchmark biomedical tasks, such as relation extraction, document classification, question answering, and summarization. To the best of our knowledge, this is the first work that conducts an extensive evaluation of ChatGPT in the biomedical domain. Interestingly, we find based on our evaluation that in biomedical datasets that have smaller training sets, zero-shot ChatGPT even outperforms the state-of-the-art fine-tuned generative transformer models, such as BioGPT and BioBART. This suggests that ChatGPT's pre-training on large text corpora makes it quite specialized even in the biomedical domain. Our findings demonstrate that ChatGPT has the potential to be a valuable tool for various tasks in the biomedical domain that lack large annotated data.

In many real-world settings, image observations of freely rotating 3D rigid bodies, such as satellites, may be available when low-dimensional measurements are not. However, the high-dimensionality of image data precludes the use of classical estimation techniques to learn the dynamics and a lack of interpretability reduces the usefulness of standard deep learning methods. In this work, we present a physics-informed neural network model to estimate and predict 3D rotational dynamics from image sequences. We achieve this using a multi-stage prediction pipeline that maps individual images to a latent representation homeomorphic to $\mathbf{SO}(3)$, computes angular velocities from latent pairs, and predicts future latent states using the Hamiltonian equations of motion with a learned representation of the Hamiltonian. We demonstrate the efficacy of our approach on a new rotating rigid-body dataset with sequences of rotating cubes and rectangular prisms with uniform and non-uniform density.

Soft robotics is an emergent and swiftly evolving field. Pneumatic actuators are suitable for driving soft robots because of their superior performance. However, their control is not easy due to their hysteresis characteristics. In response to these challenges, we propose an adaptive control method to compensate hysteresis of a soft actuator. Employing a novel dual pneumatic artificial muscle (PAM) bending actuator, the innovative control strategy abates hysteresis effects by dynamically modulating gains within a traditional PID controller corresponding with the predicted motion of the reference trajectory. Through comparative experimental evaluation, we found that the new control method outperforms its conventional counterparts regarding tracking accuracy and response speed. Our work reveals a new direction for advancing control in soft actuators.

We study causal, low-latency, sequential video compression when the output is subjected to both a mean squared-error (MSE) distortion loss as well as a perception loss to target realism. Motivated by prior approaches, we consider two different perception loss functions (PLFs). The first, PLF-JD, considers the joint distribution (JD) of all the video frames up to the current one, while the second metric, PLF-FMD, considers the framewise marginal distributions (FMD) between the source and reconstruction. Using information theoretic analysis and deep-learning based experiments, we demonstrate that the choice of PLF can have a significant effect on the reconstruction, especially at low-bit rates. In particular, while the reconstruction based on PLF-JD can better preserve the temporal correlation across frames, it also imposes a significant penalty in distortion compared to PLF-FMD and further makes it more difficult to recover from errors made in the earlier output frames. Although the choice of PLF decisively affects reconstruction quality, we also demonstrate that it may not be essential to commit to a particular PLF during encoding and the choice of PLF can be delegated to the decoder. In particular, encoded representations generated by training a system to minimize the MSE (without requiring either PLF) can be {\em near universal} and can generate close to optimal reconstructions for either choice of PLF at the decoder. We validate our results using (one-shot) information-theoretic analysis, detailed study of the rate-distortion-perception tradeoff of the Gauss-Markov source model as well as deep-learning based experiments on moving MNIST and KTH datasets.

Human actions in egocentric videos are often hand-object interactions composed from a verb (performed by the hand) applied to an object. Despite their extensive scaling up, egocentric datasets still face two limitations - sparsity of action compositions and a closed set of interacting objects. This paper proposes a novel open vocabulary action recognition task. Given a set of verbs and objects observed during training, the goal is to generalize the verbs to an open vocabulary of actions with seen and novel objects. To this end, we decouple the verb and object predictions via an object-agnostic verb encoder and a prompt-based object encoder. The prompting leverages CLIP representations to predict an open vocabulary of interacting objects. We create open vocabulary benchmarks on the EPIC-KITCHENS-100 and Assembly101 datasets; whereas closed-action methods fail to generalize, our proposed method is effective. In addition, our object encoder significantly outperforms existing open-vocabulary visual recognition methods in recognizing novel interacting objects.

Large Language Models (LLMs) have drawn widespread attention and research due to their astounding performance in tasks such as text generation and reasoning. Derivative products, like ChatGPT, have been extensively deployed and highly sought after. Meanwhile, the evaluation and optimization of LLMs in software engineering tasks, such as code generation, have become a research focus. However, there is still a lack of systematic research on the application and evaluation of LLMs in the field of software engineering. Therefore, this paper is the first to comprehensively investigate and collate the research and products combining LLMs with software engineering, aiming to answer two questions: (1) What are the current integrations of LLMs with software engineering? (2) Can LLMs effectively handle software engineering tasks? To find the answers, we have collected related literature as extensively as possible from seven mainstream databases, and selected 123 papers for analysis. We have categorized these papers in detail and reviewed the current research status of LLMs from the perspective of seven major software engineering tasks, hoping this will help researchers better grasp the research trends and address the issues when applying LLMs. Meanwhile, we have also organized and presented papers with evaluation content to reveal the performance and effectiveness of LLMs in various software engineering tasks, providing guidance for researchers and developers to optimize.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司