亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explicitly models a coarse and noisy quantization in a communication system empowered by orthogonal time frequency space (OTFS) for cost and power efficiency. We first point out, with coarse quantization, the effective channel is imbalanced and thus no longer able to circularly shift the transmitted symbols along the delay-Doppler domain. Meanwhile, the effective channel is non-isotropic, which imposes a significant loss to symbol detection algorithms like the original approximate message passing (AMP). Although the algorithm of generalized expectation consistent for signal recovery (GEC-SR) can mitigate this loss, the complexity in computation is prohibitively high, mainly due to an dramatic increase in the matrix size of OTFS. In this context, we propose a low-complexity algorithm that incorporates into the GEC-SR a quick inversion of quasi-banded matrices, reducing the complexity from a cubic order to a linear order while keeping the performance at the same level.

相關內容

This paper shows the initial stages of development, from first principles, of a formal logic to characterise and then explore issues in a broadly defined idea of Veracity, which includes properties of demonstrability, truth, trust and authenticity.

This paper proposes a novel method for demand forecasting in a pricing context. Here, modeling the causal relationship between price as an input variable to demand is crucial because retailers aim to set prices in a (profit) optimal manner in a downstream decision making problem. Our methods bring together the Double Machine Learning methodology for causal inference and state-of-the-art transformer-based forecasting models. In extensive empirical experiments, we show on the one hand that our method estimates the causal effect better in a fully controlled setting via synthetic, yet realistic data. On the other hand, we demonstrate on real-world data that our method outperforms forecasting methods in off-policy settings (i.e., when there's a change in the pricing policy) while only slightly trailing in the on-policy setting.

The task of rumour verification in social media concerns assessing the veracity of a claim on the basis of conversation threads that result from it. While previous work has focused on predicting a veracity label, here we reformulate the task to generate model-centric, free-text explanations of a rumour's veracity. We follow an unsupervised approach by first utilising post-hoc explainability methods to score the most important posts within a thread and then we use these posts to generate informative explanatory summaries by employing template-guided summarisation. To evaluate the informativeness of the explanatory summaries, we exploit the few-shot learning capabilities of a large language model (LLM). Our experiments show that LLMs can have similar agreement to humans in evaluating summaries. Importantly, we show that explanatory abstractive summaries are more informative and better reflect the predicted rumour veracity than just using the highest ranking posts in the thread.

We propose a novel distributional regression model for a multivariate response vector based on a copula process over the covariate space. It uses the implicit copula of a Gaussian multivariate regression, which we call a ``regression copula''. To allow for large covariate vectors their coefficients are regularized using a novel multivariate extension of the horseshoe prior. Bayesian inference and distributional predictions are evaluated using efficient variational inference methods, allowing application to large datasets. An advantage of the approach is that the marginal distributions of the response vector can be estimated separately and accurately, resulting in predictive distributions that are marginally-calibrated. Two substantive applications of the methodology highlight its efficacy in multivariate modeling. The first is the econometric modeling and prediction of half-hourly regional Australian electricity prices. Here, our approach produces more accurate distributional forecasts than leading benchmark methods. The second is the evaluation of multivariate posteriors in likelihood-free inference (LFI) of a model for tree species abundance data, extending a previous univariate regression copula LFI method. In both applications, we demonstrate that our new approach exhibits a desirable marginal calibration property.

We investigate two possible techniques to authenticate the q-digest data structure, along with a worst-case study of the computational complexity both in time and space of the proposed solutions, and considerations on the feasibility of the presented approaches in real-world scenarios. We conclude the discussion by presenting some considerations on the information complexity of the queries in the two proposed approaches, and by presenting some interesting ideas that could be the subject of future studies on the topic.

This paper considers the optimal sensor allocation for estimating the emission rates of multiple sources in a two-dimensional spatial domain. Locations of potential emission sources are known (e.g., factory stacks), and the number of sources is much greater than the number of sensors that can be deployed, giving rise to the optimal sensor allocation problem. In particular, we consider linear dispersion forward models, and the optimal sensor allocation is formulated as a bilevel optimization problem. The outer problem determines the optimal sensor locations by minimizing the overall Mean Squared Error of the estimated emission rates over various wind conditions, while the inner problem solves an inverse problem that estimates the emission rates. Two algorithms, including the repeated Sample Average Approximation and the Stochastic Gradient Descent based bilevel approximation, are investigated in solving the sensor allocation problem. Convergence analysis is performed to obtain the performance guarantee, and numerical examples are presented to illustrate the proposed approach.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司