亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an alternating least squares type numerical optimization scheme to estimate conditionally-independent mixture models in $\mathbb{R}^n$, with minimal additional distributional assumptions. Following the method of moments, we tackle a coupled system of low-rank tensor decomposition problems. The steep costs associated with high-dimensional tensors are avoided, through the development of specialized tensor-free operations. Numerical experiments illustrate the performance of the algorithm and its applicability to various models and applications. In many cases the results exhibit improved reliability over the expectation-maximization algorithm, with similar time and storage costs. We also provide some supporting theory, establishing identifiability and local linear convergence.

相關內容

A general numerical method using sum of squares programming is proposed to address the problem of estimating the region of attraction (ROA) of an asymptotically stable equilibrium point of a nonlinear polynomial system. The method is based on Lyapunov theory, and a shape function is defined to enlarge the provable subset of a local Lyapunov function. In contrast with existing methods with a shape function centered at the equilibrium point, the proposed method utilizes a shifted shape function (SSF) with its center shifted iteratively towards the boundary of the newly obtained invariant subset to improve ROA estimation. A set of shifting centers with corresponding SSFs is generated to produce proven subsets of the exact ROA and then a composition method, namely R-composition, is employed to express these independent sets in a compact form by just a single but richer-shaped level set. The proposed method denoted as RcomSSF brings a significant improvement for general ROA estimation problems, especially for non-symmetric or unbounded ROA, while keeping the computational burden at a reasonable level. Its effectiveness and advantages are demonstrated by several benchmark examples from literature.

Tensor decomposition serves as a powerful primitive in statistics and machine learning. In this paper, we focus on using power iteration to decompose an overcomplete random tensor. Past work studying the properties of tensor power iteration either requires a non-trivial data-independent initialization, or is restricted to the undercomplete regime. Moreover, several papers implicitly suggest that logarithmically many iterations (in terms of the input dimension) are sufficient for the power method to recover one of the tensor components. In this paper, we analyze the dynamics of tensor power iteration from random initialization in the overcomplete regime. Surprisingly, we show that polynomially many steps are necessary for convergence of tensor power iteration to any of the true component, which refutes the previous conjecture. On the other hand, our numerical experiments suggest that tensor power iteration successfully recovers tensor components for a broad range of parameters, despite that it takes at least polynomially many steps to converge. To further complement our empirical evidence, we prove that a popular objective function for tensor decomposition is strictly increasing along the power iteration path. Our proof is based on the Gaussian conditioning technique, which has been applied to analyze the approximate message passing (AMP) algorithm. The major ingredient of our argument is a conditioning lemma that allows us to generalize AMP-type analysis to non-proportional limit and polynomially many iterations of the power method.

The Gaussian graphical model is routinely employed to model the joint distribution of multiple random variables. The graph it induces is not only useful for describing the relationship between random variables but also critical for improving statistical estimation precision. In high-dimensional data analysis, despite an abundant literature on estimating this graph structure, tests for the adequacy of its specification at a global level is severely underdeveloped. To make progress, this paper proposes a novel goodness-of-fit test that is computationally easy and theoretically tractable. Under the null hypothesis, it is shown that asymptotic distribution of the proposed test statistic follows a Gumbel distribution. Interestingly the location parameter of this limiting Gumbel distribution depends on the dependence structure under the null. We further develop a novel consistency-empowered test statistic when the true structure is nested in the postulated structure, by amplifying the noise incurred in estimation. Extensive simulation illustrates that the proposed test procedure has the right size under the null, and is powerful under the alternative. As an application, we apply the test to the analysis of a COVID-19 data set, demonstrating that our test can serve as a valuable tool in choosing a graph structure to improve estimation efficiency.

In this manuscript, we consider a finite multivariate nonparametric mixture model where the dependence between the marginal densities is modeled using the copula device. Pseudo EM stochastic algorithms were recently proposed to estimate all of the components of this model under a location-scale constraint on the marginals. Here, we introduce a deterministic algorithm that seeks to maximize a smoothed semiparametric likelihood. No location-scale assumption is made about the marginals. The algorithm is monotonic in one special case, and, in another, leads to ``approximate monotonicity'' -- whereby the difference between successive values of the objective function becomes non-negative up to an additive term that becomes negligible after a sufficiently large number of iterations. The behavior of this algorithm is illustrated on several simulated datasets. The results suggest that, under suitable conditions, the proposed algorithm may indeed be monotonic in general. A discussion of the results and some possible future research directions round out our presentation.

Estimating the entropy rate of discrete time series is a challenging problem with important applications in numerous areas including neuroscience, genomics, image processing and natural language processing. A number of approaches have been developed for this task, typically based either on universal data compression algorithms, or on statistical estimators of the underlying process distribution. In this work, we propose a fully-Bayesian approach for entropy estimation. Building on the recently introduced Bayesian Context Trees (BCT) framework for modelling discrete time series as variable-memory Markov chains, we show that it is possible to sample directly from the induced posterior on the entropy rate. This can be used to estimate the entire posterior distribution, providing much richer information than point estimates. We develop theoretical results for the posterior distribution of the entropy rate, including proofs of consistency and asymptotic normality. The practical utility of the method is illustrated on both simulated and real-world data, where it is found to outperform state-of-the-art alternatives.

Expected Shortfall (ES), also known as superquantile or Conditional Value-at-Risk, has been recognized as an important measure in risk analysis and stochastic optimization, and is also finding applications beyond these areas. In finance, it refers to the conditional expected return of an asset given that the return is below some quantile of its distribution. In this paper, we consider a recently proposed joint regression framework that simultaneously models the quantile and the ES of a response variable given a set of covariates, for which the state-of-the-art approach is based on minimizing a joint loss function that is non-differentiable and non-convex. This inevitably raises numerical challenges and limits its applicability for analyzing large-scale data. Motivated by the idea of using Neyman-orthogonal scores to reduce sensitivity with respect to nuisance parameters, we propose a statistically robust (to highly skewed and heavy-tailed data) and computationally efficient two-step procedure for fitting joint quantile and ES regression models. With increasing covariate dimensions, we establish explicit non-asymptotic bounds on estimation and Gaussian approximation errors, which lay the foundation for statistical inference. Finally, we demonstrate through numerical experiments and two data applications that our approach well balances robustness, statistical, and numerical efficiencies for expected shortfall regression.

In this paper, different strands of literature are combined in order to obtain algorithms for semi-parametric estimation of discrete choice models that include the modelling of unobserved heterogeneity by using mixing distributions for the parameters defining the preferences. The models use the theory on non-parametric maximum likelihood estimation (NP-MLE) that has been developed for general mixing models. The expectation-maximization (EM) techniques used in the NP-MLE literature are combined with strategies for choosing appropriate approximating models using adaptive grid techniques. \\ Jointly this leads to techniques for specification and estimation that can be used to obtain a consistent specification of the mixing distribution. Additionally, also algorithms for the estimation are developed that help to decrease problems due to the curse of dimensionality. \\ The proposed algorithms are demonstrated in a small scale simulation study to be useful for the specification and estimation of mixture models in the discrete choice context providing some information on the specification of the mixing distribution. The simulations document that some aspects of the mixing distribution such as the expectation can be estimated reliably. They also demonstrate, however, that typically different approximations to the mixing distribution lead to similar values of the likelihood and hence are hard to discriminate. Therefore it does not appear to be possible to reliably infer the most appropriate parametric form for the estimated mixing distribution.

Single-channel deep speech enhancement approaches often estimate a single multiplicative mask to extract clean speech without a measure of its accuracy. Instead, in this work, we propose to quantify the uncertainty associated with clean speech estimates in neural network-based speech enhancement. Predictive uncertainty is typically categorized into aleatoric uncertainty and epistemic uncertainty. The former accounts for the inherent uncertainty in data and the latter corresponds to the model uncertainty. Aiming for robust clean speech estimation and efficient predictive uncertainty quantification, we propose to integrate statistical complex Gaussian mixture models (CGMMs) into a deep speech enhancement framework. More specifically, we model the dependency between input and output stochastically by means of a conditional probability density and train a neural network to map the noisy input to the full posterior distribution of clean speech, modeled as a mixture of multiple complex Gaussian components. Experimental results on different datasets show that the proposed algorithm effectively captures predictive uncertainty and that combining powerful statistical models and deep learning also delivers a superior speech enhancement performance.

Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding, and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e.Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. Through improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score).

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司