In the context of Bayesian inversion for scientific and engineering modeling, Markov chain Monte Carlo sampling strategies are the benchmark due to their flexibility and robustness in dealing with arbitrary posterior probability density functions (PDFs). However, these algorithms been shown to be inefficient when sampling from posterior distributions that are high-dimensional or exhibit multi-modality and/or strong parameter correlations. In such contexts, the sequential Monte Carlo technique of transitional Markov chain Monte Carlo (TMCMC) provides a more efficient alternative. Despite the recent applicability for Bayesian updating and model selection across a variety of disciplines, TMCMC may require a prohibitive number of tempering stages when the prior PDF is significantly different from the target posterior. Furthermore, the need to start with an initial set of samples from the prior distribution may present a challenge when dealing with implicit priors, e.g. based on feasible regions. Finally, TMCMC can not be used for inverse problems with improper prior PDFs that represent lack of prior knowledge on all or a subset of parameters. In this investigation, a generalization of TMCMC that alleviates such challenges and limitations is proposed, resulting in a tempering sampling strategy of enhanced robustness and computational efficiency. Convergence analysis of the proposed sequential Monte Carlo algorithm is presented, proving that the distance between the intermediate distributions and the target posterior distribution monotonically decreases as the algorithm proceeds. The enhanced efficiency associated with the proposed generalization is highlighted through a series of test inverse problems and an engineering application in the oil and gas industry.
In this study, we generalize a problem of sampling a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck (OU) process, where the samples are sent to a remote estimator and the estimator makes a causal estimate of the observed realtime signal. In recent years, the problem is solved for stable OU processes. We present solutions for the optimal sampling policy that exhibits a smaller estimation error for both stable and unstable cases of the OU process along with a special case when the OU process turns to a Wiener process. The obtained optimal sampling policy is a threshold policy. However, the thresholds are different for all three cases. Later, we consider additional noise with the sample when the sampling decision is made beforehand. The estimator utilizes noisy samples to make an estimate of the current signal value. The mean-square error (mse) is changed from previous due to noise and the additional term in the mse is solved which provides performance upper bound and room for a pursuing further investigation on this problem to find an optimal sampling strategy that minimizes the estimation error when the observed samples are noisy. Numerical results show performance degradation caused by the additive noise.
We consider the fixed-budget best arm identification problem with Normal rewards. In this problem, the forecaster is given $K$ arms (treatments) and $T$ time steps. The forecaster attempts to find the best arm in terms of the largest mean via an adaptive experiment conducted with an algorithm. The performance of the algorithm is measured by the simple regret, or the quality of the estimated best arm. It is known that the frequentist simple regret can be exponentially small to $T$ for any fixed parameters, whereas the Bayesian simple regret is $\Theta(T^{-1})$ over a continuous prior distribution. This paper shows that Bayes optimal algorithm, which minimizes the Bayesian simple regret, does not have an exponential simple regret for some parameters. This finding contrasts with the many results indicating the asymptotic equivalence of Bayesian and frequentist algorithms in fixed sampling regimes. While the Bayes optimal algorithm is described in terms of a recursive equation that is virtually impossible to compute exactly, we pave the way to an analysis by introducing a key quantity that we call the expected Bellman improvement.
We consider the structure learning problem with all node variables having the same error variance, an assumption known to ensure the identifiability of the causal directed acyclic graph (DAG). We propose an empirical Bayes formulation of the problem that yields a non-decomposable posterior score for DAG models. To facilitate efficient posterior computation, we approximate the posterior probability of each ordering by that of a "best" DAG model, which naturally leads to an order-based Markov chain Monte Carlo (MCMC) algorithm. Strong selection consistency for our model is proved under mild high-dimensional conditions, and the mixing behavior of our sampler is theoretically investigated. Further, we propose a new iterative top-down algorithm, which quickly yields an approximate solution to the structure learning problem and can be used to initialize the MCMC sampler. We demonstrate that our method outperforms other state-of-the-art algorithms under various simulation settings, and conclude the paper with a single-cell real-data study illustrating practical advantages of the proposed method.
Establishing a low-dimensional representation of the data leads to efficient data learning strategies. In many cases, the reduced dimension needs to be explicitly stated and estimated from the data. We explore the estimation of dimension in finite samples as a constrained optimization problem, where the estimated dimension is a maximizer of a penalized profile likelihood criterion within the framework of a probabilistic principal components analysis. Unlike other penalized maximization problems that require an "optimal" penalty tuning parameter, we propose a data-averaging procedure whereby the estimated dimension emerges as the most favourable choice over a range of plausible penalty parameters. The proposed heuristic is compared to a large number of alternative criteria in simulations and an application to gene expression data. Extensive simulation studies reveal that none of the methods uniformly dominate the other and highlight the importance of subject-specific knowledge in choosing statistical methods for dimension learning. Our application results also suggest that gene expression data have a higher intrinsic dimension than previously thought. Overall, our proposed heuristic strikes a good balance and is the method of choice when model assumptions deviated moderately.
Current deep learning (DL) based approaches to speech intelligibility enhancement in noisy environments are generally trained to minimise the distance between clean and enhanced speech features. These often result in improved speech quality however they suffer from a lack of generalisation and may not deliver the required speech intelligibility in everyday noisy situations. In an attempt to address these challenges, researchers have explored intelligibility-oriented (I-O) loss functions to train DL approaches for robust speech enhancement (SE). In this paper, we formulate a novel canonical correlation-based I-O loss function to more effectively train DL algorithms. Specifically, we present a fully convolutional SE model that uses a modified canonical-correlation based short-time objective intelligibility (CC-STOI) metric as a training cost function. To the best of our knowledge, this is the first work that exploits the integration of canonical correlation in an I-O based loss function for SE. Comparative experimental results demonstrate that our proposed CC-STOI based SE framework outperforms DL models trained with conventional STOI and distance-based loss functions, in terms of both standard objective and subjective evaluation measures when dealing with unseen speakers and noises.
Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over subsets of data, {\em i.e.} minibatches. While computationally appealing, we highlight in this paper some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behavior. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.
We study the offline meta-reinforcement learning (OMRL) problem, a paradigm which enables reinforcement learning (RL) algorithms to quickly adapt to unseen tasks without any interactions with the environments, making RL truly practical in many real-world applications. This problem is still not fully understood, for which two major challenges need to be addressed. First, offline RL usually suffers from bootstrapping errors of out-of-distribution state-actions which leads to divergence of value functions. Second, meta-RL requires efficient and robust task inference learned jointly with control policy. In this work, we enforce behavior regularization on learned policy as a general approach to offline RL, combined with a deterministic context encoder for efficient task inference. We propose a novel negative-power distance metric on bounded context embedding space, whose gradients propagation is detached from the Bellman backup. We provide analysis and insight showing that some simple design choices can yield substantial improvements over recent approaches involving meta-RL and distance metric learning. To the best of our knowledge, our method is the first model-free and end-to-end OMRL algorithm, which is computationally efficient and demonstrated to outperform prior algorithms on several meta-RL benchmarks.
Inferring the most likely configuration for a subset of variables of a joint distribution given the remaining ones - which we refer to as co-generation - is an important challenge that is computationally demanding for all but the simplest settings. This task has received a considerable amount of attention, particularly for classical ways of modeling distributions like structured prediction. In contrast, almost nothing is known about this task when considering recently proposed techniques for modeling high-dimensional distributions, particularly generative adversarial nets (GANs). Therefore, in this paper, we study the occurring challenges for co-generation with GANs. To address those challenges we develop an annealed importance sampling based Hamiltonian Monte Carlo co-generation algorithm. The presented approach significantly outperforms classical gradient based methods on a synthetic and on the CelebA and LSUN datasets.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.