Meta-analysis allows rigorous aggregation of estimates and uncertainty across multiple studies. When a given study reports multiple estimates, such as log odds ratios (ORs) or log relative risks (RRs) across exposure groups, accounting for within-study correlations improves accuracy and efficiency of meta-analytic results. Canonical approaches of Greenland-Longnecker and Hamling estimate pseudo cases and non-cases for exposure groups to obtain within-study correlations. However, currently available implementations for both methods fail on simple examples. We review both GL and Hamling methods through the lens of optimization. For ORs, we provide modifications of each approach that ensure convergence for any feasible inputs. For GL, this is achieved through a new connection to entropic minimization. For Hamling, a modification leads to a provably solvable equivalent set of equations given a specific initialization. For each, we provide implementations a guaranteed to work for any feasible input. For RRs, we show the new GL approach is always guaranteed to succeed, but any Hamling approach may fail: we give counter-examples where no solutions exist. We derive a sufficient condition on reported RRs that guarantees success when reported variances are all equal.
Meta-analysis aggregates information across related studies to provide more reliable statistical inference and has been a vital tool for assessing the safety and efficacy of many high profile pharmaceutical products. A key challenge in conducting a meta-analysis is that the number of related studies is typically small. Applying classical methods that are asymptotic in the number of studies can compromise the validity of inference, particularly when heterogeneity across studies is present. Moreover, serious adverse events are often rare and can result in one or more studies with no events in at least one study arm. Practitioners often apply arbitrary continuity corrections or remove zero-event studies to stabilize or define effect estimates in such settings, which can further invalidate subsequent inference. To address these significant practical issues, we introduce an exact inference method for comparing event rates in two treatment arms under a random effects framework, which we coin "XRRmeta". In contrast to existing methods, the coverage of the confidence interval from XRRmeta is guaranteed to be at or above the nominal level (up to Monte Carlo error) when the event rates, number of studies, and/or the within-study sample sizes are small. Extensive numerical studies indicate that XRRmeta does not yield overly conservative inference and we apply our proposed method to two real-data examples using our open source R package.
Self-supervised learning (SSL) techniques have achieved remarkable results in various speech processing tasks. Nonetheless, a significant challenge remains in reducing the reliance on vast amounts of speech data for pre-training. This paper proposes to address this challenge by leveraging synthetic speech to augment a low-resource pre-training corpus. We construct a high-quality text-to-speech (TTS) system with limited resources using SSL features and generate a large synthetic corpus for pre-training. Experimental results demonstrate that our proposed approach effectively reduces the demand for speech data by 90% with only slight performance degradation. To the best of our knowledge, this is the first work aiming to enhance low-resource self-supervised learning in speech processing.
Pruning-quantization joint learning always facilitates the deployment of deep neural networks (DNNs) on resource-constrained edge devices. However, most existing methods do not jointly learn a global criterion for pruning and quantization in an interpretable way. In this paper, we propose a novel physics inspired criterion for pruning-quantization joint learning (PIC-PQ), which is explored from an analogy we first draw between elasticity dynamics (ED) and model compression (MC). Specifically, derived from Hooke's law in ED, we establish a linear relationship between the filters' importance distribution and the filter property (FP) by a learnable deformation scale in the physics inspired criterion (PIC). Furthermore, we extend PIC with a relative shift variable for a global view. To ensure feasibility and flexibility, available maximum bitwidth and penalty factor are introduced in quantization bitwidth assignment. Experiments on benchmarks of image classification demonstrate that PIC-PQ yields a good trade-off between accuracy and bit-operations (BOPs) compression ratio e.g., 54.96X BOPs compression ratio in ResNet56 on CIFAR10 with 0.10% accuracy drop and 53.24X in ResNet18 on ImageNet with 0.61% accuracy drop). The code will be available at //github.com/fanxxxxyi/PIC-PQ.
We study the problem of Trajectory Optimization (TO) for a general class of stiff and constrained dynamic systems. We establish a set of mild assumptions, under which we show that TO converges numerically stably to a locally optimal and feasible solution up to arbitrary user-specified error tolerance. Our key observation is that all prior works use SQP as a black-box solver, where a TO problem is formulated as a Nonlinear Program (NLP) and the underlying SQP solver is not allowed to modify the NLP. Instead, we propose a white-box TO solver, where the SQP solver is informed with characteristics of the objective function and the dynamic system. It then uses these characteristics to derive approximate dynamic systems and customize the discretization schemes.
Learning a universal policy across different robot morphologies can significantly improve learning efficiency and enable zero-shot generalization to unseen morphologies. However, learning a highly performant universal policy requires sophisticated architectures like transformers (TF) that have larger memory and computational cost than simpler multi-layer perceptrons (MLP). To achieve both good performance like TF and high efficiency like MLP at inference time, we propose HyperDistill, which consists of: (1) A morphology-conditioned hypernetwork (HN) that generates robot-wise MLP policies, and (2) A policy distillation approach that is essential for successful training. We show that on UNIMAL, a benchmark with hundreds of diverse morphologies, HyperDistill performs as well as a universal TF teacher policy on both training and unseen test robots, but reduces model size by 6-14 times, and computational cost by 67-160 times in different environments. Our analysis attributes the efficiency advantage of HyperDistill at inference time to knowledge decoupling, i.e., the ability to decouple inter-task and intra-task knowledge, a general principle that could also be applied to improve inference efficiency in other domains.
Chaos presents complex dynamics arising from nonlinearity and a sensitivity to initial states. These characteristics suggest a depth of expressivity that underscores their potential for advanced computational applications. However, strategies to effectively exploit chaotic dynamics for information processing have largely remained elusive. In this study, we reveal that the essence of chaos can be found in various state-of-the-art deep neural networks. Drawing inspiration from this revelation, we propose a novel method that directly leverages chaotic dynamics for deep learning architectures. Our approach is systematically evaluated across distinct chaotic systems. In all instances, our framework presents superior results to conventional deep neural networks in terms of accuracy, convergence speed, and efficiency. Furthermore, we found an active role of transient chaos formation in our scheme. Collectively, this study offers a new path for the integration of chaos, which has long been overlooked in information processing, and provides insights into the prospective fusion of chaotic dynamics within the domains of machine learning and neuromorphic computation.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.