In this paper, we present a logic for conditional strong historical necessity in branching time and apply it to analyze a nontheological version of Lavenham's argument for future determinism. Strong historical necessity is motivated from a linguistical perspective, and an example of it is ``If I had not gotten away, I must have been dead''. The approach of the logic is as follows. The agent accepts ontic rules concerning how the world evolves over time. She takes some rules as indefeasible, which determine acceptable timelines. When evaluating a sentence with conditional strong historical necessity, we introduce its antecedent as an indefeasible ontic rule and then check whether its consequent holds for all acceptable timelines. The argument is not sound by the logic.
In this paper, conditional stability estimates are derived for unique continuation and Cauchy problems associated to the Poisson equation in ultra-weak variational form. Numerical approximations are obtained as minima of regularized least squares functionals. The arising dual norms are replaced by discretized dual norms, which leads to a mixed formulation in terms of trial- and test-spaces. For stable pairs of such spaces, and a proper choice of the regularization parameter, the $L_2$-error on a subdomain in the obtained numerical approximation can be bounded by the best possible fractional power of the sum of the data error and the error of best approximation. Compared to the use of a standard variational formulation, the latter two errors are measured in weaker norms. To avoid the use of $C^1$-finite element test spaces, nonconforming finite element test spaces can be applied as well. They either lead to the qualitatively same error bound, or in a simplified version, to such an error bound modulo an additional data oscillation term. Numerical results illustrate our theoretical findings.
Multi-scale problems, where variables of interest evolve in different time-scales and live in different state-spaces, can be found in many fields of science. Here, we introduce a new recursive methodology for Bayesian inference that aims at estimating the static parameters and tracking the dynamic variables of these kind of systems. Although the proposed approach works in rather general multi-scale systems, for clarity we analyze the case of a heterogeneous multi-scale model with 3 time-scales (static parameters, slow dynamic state variables and fast dynamic state variables). The proposed scheme, based on nested filtering methodology of P\'erez-Vieites et al. (2018), combines three intertwined layers of filtering techniques that approximate recursively the joint posterior probability distribution of the parameters and both sets of dynamic state variables given a sequence of partial and noisy observations. We explore the use of sequential Monte Carlo schemes in the first and second layers while we use an unscented Kalman filter to obtain a Gaussian approximation of the posterior probability distribution of the fast variables in the third layer. Some numerical results are presented for a stochastic two-scale Lorenz 96 model with unknown parameters.
In a previous publication, we introduced an abstract logic via an abstract notion of quantifier. Drawing upon concepts from categorical logic, this abstract logic interprets formulas from context as subobjects in a specific category, e.g., Cartesian, regular, or coherent categories, Grothendieck, or elementary toposes. We proposed an entailment system formulated as a sequent calculus which we proved complete. Building on this foundation, our current work explores model theory within abstract logic. More precisely, we generalize one of the most important and powerful classical model theory methods, namely the ultraproduct method, and show its fundamental theorem, i.e., Los's theorem. The result is shown as independently as possible of a given quantifier.
We propose an extremely versatile approach to address a large family of matrix nearness problems, possibly with additional linear constraints. Our method is based on splitting a matrix nearness problem into two nested optimization problems, of which the inner one can be solved either exactly or cheaply, while the outer one can be recast as an unconstrained optimization task over a smooth real Riemannian manifold. We observe that this paradigm applies to many matrix nearness problems of practical interest appearing in the literature, thus revealing that they are equivalent in this sense to a Riemannian optimization problem. We also show that the objective function to be minimized on the Riemannian manifold can be discontinuous, thus requiring regularization techniques, and we give conditions for this to happen. Finally, we demonstrate the practical applicability of our method by implementing it for a number of matrix nearness problems that are relevant for applications and are currently considered very demanding in practice. Extensive numerical experiments demonstrate that our method often greatly outperforms its predecessors, including algorithms specifically designed for those particular problems.
This paper addresses second-order stochastic optimization for estimating the minimizer of a convex function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computational complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the asymptotic efficiency of the proposed approach. This work so expands the application scope of secondorder algorithms in stochastic optimization.
In this work, we use the monolithic convex limiting (MCL) methodology to enforce relevant inequality constraints in implicit finite element discretizations of the compressible Euler equations. In this context, preservation of invariant domains follows from positivity preservation for intermediate states of the density and internal energy. To avoid spurious oscillations, we additionally impose local maximum principles on intermediate states of the density, velocity components, and specific total energy. For the backward Euler time stepping, we show the invariant domain preserving (IDP) property of the fully discrete MCL scheme by constructing a fixed-point iteration that is IDP and converges under a strong time step restriction. Our iterative solver for the nonlinear discrete problem employs a more efficient fixed-point iteration. The matrix of the associated linear system is a robust low-order Jacobian approximation that exploits the homogeneity property of the flux function. The limited antidiffusive terms are treated explicitly. We use positivity preservation as a stopping criterion for nonlinear iterations. The first iteration yields the solution of a linearized semi-implicit problem. This solution possesses the discrete conservation property but is generally not IDP. Further iterations are performed if any non-IDP states are detected. The existence of an IDP limit is guaranteed by our analysis. To facilitate convergence to steady-state solutions, we perform adaptive explicit underrelaxation at the end of each time step. The calculation of appropriate relaxation factors is based on an approximate minimization of nodal entropy residuals. The performance of proposed algorithms and alternative solution strategies is illustrated by the convergence history for standard two-dimensional test problems.
In this paper, we propose, analyze and demonstrate a dynamic momentum method to accelerate power and inverse power iterations with minimal computational overhead. The method can be applied to real diagonalizable matrices, is provably convergent with acceleration in the symmetric case, and does not require a priori spectral knowledge. We review and extend background results on previously developed static momentum accelerations for the power iteration through the connection between the momentum accelerated iteration and the standard power iteration applied to an augmented matrix. We show that the augmented matrix is defective for the optimal parameter choice. We then present our dynamic method which updates the momentum parameter at each iteration based on the Rayleigh quotient and two previous residuals. We present convergence and stability theory for the method by considering a power-like method consisting of multiplying an initial vector by a sequence of augmented matrices. We demonstrate the developed method on a number of benchmark problems, and see that it outperforms both the power iteration and often the static momentum acceleration with optimal parameter choice. Finally, we present and demonstrate an explicit extension of the algorithm to inverse power iterations.
In this paper, we introduce a randomized algorithm for solving the non-symmetric eigenvalue problem, referred to as randomized Implicitly Restarted Arnoldi (rIRA). This method relies on using a sketch-orthogonal basis during the Arnoldi process while maintaining the Arnoldi relation and exploiting a restarting scheme to focus on a specific part of the spectrum. We analyze this method and show that it retains useful properties of the Implicitly Restarted Arnoldi (IRA) method, such as restarting without adding errors to the Ritz pairs and implicitly applying polynomial filtering. Experiments are presented to validate the numerical efficiency of the proposed randomized eigenvalue solver.
Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue.We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $ n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.
In this paper we propose and analyse a new formulation and pointwise divergence-free mixed finite element methods for the numerical approximation of Darcy--Brinkman equations in vorticity--velocity--pressure form, coupled with a transport equation for thermal energy with viscous dissipative effect and mixed Navier-type boundary conditions. The solvability analysis of the continuous and discrete problems is significantly more involved than usual as it hinges on Banach spaces needed to properly control the advective and dissipative terms in the non-isothermal energy balance equation. We proceed by decoupling the set of equations and use the Banach fixed-point theorem in combination with the abstract theory for perturbed saddle-point problems. Some of the necessary estimates are straightforward modifications of well-known results, while other technical tools require a more elaborated analysis. The velocity is approximated by Raviart--Thomas elements, the vorticity uses N\'ed\'elec spaces of the first kind, the pressure is approximated by piecewise polynomials, and the temperature by continuous and piecewise polynomials of one degree higher than pressure. Special care is needed to establish discrete inf-sup conditions since the curl of the discrete vorticity is not necessarily contained in the discrete velocity space, therefore suggesting to use two different Raviart--Thomas interpolants. A discrete fixed-point argument is used to show well-posedness of the Galerkin scheme. Error estimates in appropriate norms are derived, and a few representative numerical examples in 2D and 3D and with mixed boundary conditions are provided.