Human participants play a central role in the development of modern artificial intelligence (AI) technology, in psychological science, and in user research. Recent advances in generative AI have attracted growing interest to the possibility of replacing human participants in these domains with AI surrogates. We survey several such "substitution proposals" to better understand the arguments for and against substituting human participants with modern generative AI. Our scoping review indicates that the recent wave of these proposals is motivated by goals such as reducing the costs of research and development work and increasing the diversity of collected data. However, these proposals ignore and ultimately conflict with foundational values of work with human participants: representation, inclusion, and understanding. This paper critically examines the principles and goals underlying human participation to help chart out paths for future work that truly centers and empowers participants.
This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
In this article, we study the Fekete problem in segmental and combined nodal-segmental univariate polynomial interpolation by investigating sets of segments, or segments combined with nodes, such that the Vandermonde determinant for the respective polynomial interpolation problem is maximized. For particular families of segments, we will be able to find explicit solutions of the corresponding maximization problem. The quality of the Fekete segments depends hereby strongly on the utilized normalization of the segmental information in the Vandermonde matrix. To measure the quality of the Fekete segments in interpolation, we analyse the asymptotic behaviour of the generalized Lebesgue constant linked to the interpolation problem. For particular sets of Fekete segments we will get, similar to the nodal case, a favourable logarithmic growth of this constant.
We consider the general class of time-homogeneous stochastic dynamical systems, both discrete and continuous, and study the problem of learning a representation of the state that faithfully captures its dynamics. This is instrumental to learning the transfer operator or the generator of the system, which in turn can be used for numerous tasks, such as forecasting and interpreting the system dynamics. We show that the search for a good representation can be cast as an optimization problem over neural networks. Our approach is supported by recent results in statistical learning theory, highlighting the role of approximation error and metric distortion in the learning problem. The objective function we propose is associated with projection operators from the representation space to the data space, overcomes metric distortion, and can be empirically estimated from data. In the discrete-time setting, we further derive a relaxed objective function that is differentiable and numerically well-conditioned. We compare our method against state-of-the-art approaches on different datasets, showing better performance across the board.
Simulations play a crucial role in the modern scientific process. Yet despite (or due to) their ubiquity, the Data Science community shares neither a comprehensive definition for a "high-quality" study nor a consolidated guide to designing one. Inspired by the Predictability-Computability-Stability (PCS) framework for 'veridical' Data Science, we propose six MERITS that a Data Science simulation should satisfy. Modularity and Efficiency support the Computability of a study, encouraging clean and flexible implementation. Realism and Stability address the conceptualization of the research problem: How well does a study Predict reality, such that its conclusions generalize to new data/contexts? Finally, Intuitiveness and Transparency encourage good communication and trustworthiness of study design and results. Drawing an analogy between simulation and cooking, we moreover offer (a) a conceptual framework for thinking about the anatomy of a simulation 'recipe'; (b) a baker's dozen in guidelines to aid the Data Science practitioner in designing one; and (c) a case study deconstructing a simulation through the lens of our framework to demonstrate its practical utility. By contributing this "PCS primer" for high-quality Data Science simulation, we seek to distill and enrich the best practices of simulation across disciplines into a cohesive recipe for trustworthy, veridical Data Science.
Traditionally, compiler researchers either conduct experiments within an existing production compiler or develop their own prototype compiler; both options come with trade-offs. On one hand, prototyping in a production compiler can be cumbersome, as they are often optimized for program compilation speed at the expense of software simplicity and development speed. On the other hand, the transition from a prototype compiler to production requires significant engineering work. To bridge this gap, we introduce the concept of sidekick compiler frameworks, an approach that uses multiple frameworks that interoperate with each other by leveraging textual interchange formats and declarative descriptions of abstractions. Each such compiler framework is specialized for specific use cases, such as performance or prototyping. Abstractions are by design shared across frameworks, simplifying the transition from prototyping to production. We demonstrate this idea with xDSL, a sidekick for MLIR focused on prototyping and teaching. xDSL interoperates with MLIR through a shared textual IR and the exchange of IRs through an IR Definition Language. The benefits of sidekick compiler frameworks are evaluated by showing on three use cases how xDSL impacts their development: teaching, DSL compilation, and rewrite system prototyping. We also investigate the trade-offs that xDSL offers, and demonstrate how we simplify the transition between frameworks using the IRDL dialect. With sidekick compilation, we envision a future in which engineers minimize the cost of development by choosing a framework built for their immediate needs, and later transitioning to production with minimal overhead.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN). However, most HGNNs follow a semi-supervised learning manner, which notably limits their wide use in reality since labels are usually scarce in real applications. Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels. In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo. Different from traditional contrastive learning which only focuses on contrasting positive and negative samples, HeCo employs cross-viewcontrastive mechanism. Specifically, two views of a HIN (network schema and meta-path views) are proposed to learn node embeddings, so as to capture both of local and high-order structures simultaneously. Then the cross-view contrastive learning, as well as a view mask mechanism, is proposed, which is able to extract the positive and negative embeddings from two views. This enables the two views to collaboratively supervise each other and finally learn high-level node embeddings. Moreover, two extensions of HeCo are designed to generate harder negative samples with high quality, which further boosts the performance of HeCo. Extensive experiments conducted on a variety of real-world networks show the superior performance of the proposed methods over the state-of-the-arts.
We present self-supervised geometric perception (SGP), the first general framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels (e.g., camera poses, rigid transformations). Our first contribution is to formulate geometric perception as an optimization problem that jointly optimizes the feature descriptor and the geometric models given a large corpus of visual measurements (e.g., images, point clouds). Under this optimization formulation, we show that two important streams of research in vision, namely robust model fitting and deep feature learning, correspond to optimizing one block of the unknown variables while fixing the other block. This analysis naturally leads to our second contribution -- the SGP algorithm that performs alternating minimization to solve the joint optimization. SGP iteratively executes two meta-algorithms: a teacher that performs robust model fitting given learned features to generate geometric pseudo-labels, and a student that performs deep feature learning under noisy supervision of the pseudo-labels. As a third contribution, we apply SGP to two perception problems on large-scale real datasets, namely relative camera pose estimation on MegaDepth and point cloud registration on 3DMatch. We demonstrate that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.