Instance segmentation, an important image processing operation for automation in agriculture, is used to precisely delineate individual objects of interest within images, which provides foundational information for various automated or robotic tasks such as selective harvesting and precision pruning. This study compares the one-stage YOLOv8 and the two-stage Mask R-CNN machine learning models for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in dormant season, includes images of dormant apple trees, which were used to train multi-object segmentation models delineating tree branches and trunks. Dataset 2, collected in the early growing season, includes images of apple tree canopies with green foliage and immature (green) apples (also called fruitlet), which were used to train single-object segmentation models delineating only immature green apples. The results showed that YOLOv8 performed better than Mask R-CNN, achieving good precision and near-perfect recall across both datasets at a confidence threshold of 0.5. Specifically, for Dataset 1, YOLOv8 achieved a precision of 0.90 and a recall of 0.95 for all classes. In comparison, Mask R-CNN demonstrated a precision of 0.81 and a recall of 0.81 for the same dataset. With Dataset 2, YOLOv8 achieved a precision of 0.93 and a recall of 0.97. Mask R-CNN, in this single-class scenario, achieved a precision of 0.85 and a recall of 0.88. Additionally, the inference times for YOLOv8 were 10.9 ms for multi-class segmentation (Dataset 1) and 7.8 ms for single-class segmentation (Dataset 2), compared to 15.6 ms and 12.8 ms achieved by Mask R-CNN's, respectively.
A rectangulation is a decomposition of a rectangle into finitely many rectangles. Via natural equivalence relations, rectangulations can be seen as combinatorial objects with a rich structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf algebras, etc. In this paper, we first revisit the structure of the respective equivalence classes: weak rectangulations that preserve rectangle-segment adjacencies, and strong rectangulations that preserve rectangle-rectangle adjacencies. We thoroughly investigate posets defined by adjacency in rectangulations of both kinds, and unify and simplify known bijections between rectangulations and permutation classes. This yields a uniform treatment of mappings between permutations and rectangulations that unifies the results from earlier contributions, and emphasizes parallelism and differences between the weak and the strong cases. Then, we consider the special case of guillotine rectangulations, and prove that they can be characterized - under all known mappings between permutations and rectangulations - by avoidance of two mesh patterns that correspond to "windmills" in rectangulations. This yields new permutation classes in bijection with weak guillotine rectangulations, and the first known permutation class in bijection with strong guillotine rectangulations. Finally, we address enumerative issues and prove asymptotic bounds for several families of strong rectangulations.
Recently, to deliver services directly to the network edge, fog computing, an emerging and developing technology, acts as a layer between the cloud and the IoT worlds. The cloud or fog computing nodes could be selected by IoTs applications to meet their resource needs. Due to the scarce resources of fog devices that are available, as well as the need to meet user demands for low latency and quick reaction times, resource allocation in the fog-cloud environment becomes a difficult problem. In this problem, the load balancing between several fog devices is the most important element in achieving resource efficiency and preventing overload on fog devices. In this paper, a new adaptive resource allocation technique for load balancing in a fog-cloud environment is proposed. The proposed technique ranks each fog device using hybrid multi-criteria decision-making approaches Fuzzy Analytic Hierarchy Process (FAHP) and Fuzzy Technique for Order Performance by Similarity to Ideal Solution (FTOPSIS), then selects the most effective fog device based on the resulting ranking set. The simulation results show that the proposed technique outperforms existing techniques in terms of load balancing, response time, resource utilization, and energy consumption. The proposed technique decreases the number of fog nodes by 11%, load balancing variance by 69% and increases resource utilization to 90% which is comparatively higher than the comparable methods.
Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.
Most of the existing Mendelian randomization (MR) methods are limited by the assumption of linear causality between exposure and outcome, and the development of new non-linear MR methods is highly desirable. We introduce two-stage prediction estimation and control function estimation from econometrics to MR and extend them to non-linear causality. We give conditions for parameter identification and theoretically prove the consistency and asymptotic normality of the estimates. We compare the two methods theoretically under both linear and non-linear causality. We also extend the control function estimation to a more flexible semi-parametric framework without detailed parametric specifications of causality. Extensive simulations numerically corroborate our theoretical results. Application to UK Biobank data reveals non-linear causal relationships between sleep duration and systolic/diastolic blood pressure.
Clusters of similar or dissimilar objects are encountered in many fields. Frequently used approaches treat the central object of each cluster as latent. Yet, often objects of one or more types cluster around objects of another type. Such arrangements are common in biomedical images of cells, in which nearby cell types likely interact. Quantifying spatial relationships may elucidate biological mechanisms. Parent-offspring statistical frameworks can be usefully applied even when central objects (parents) differ from peripheral ones (offspring). We propose the novel multivariate cluster point process (MCPP) to quantify multi-object (e.g., multi-cellular) arrangements. Unlike commonly used approaches, the MCPP exploits locations of the central parent object in clusters. It accounts for possibly multilayered, multivariate clustering. The model formulation requires specification of which object types function as cluster centers and which reside peripherally. If such information is unknown, the relative roles of object types may be explored by comparing fit of different models via the deviance information criterion (DIC). In simulated data, we compared DIC of a series of models; the MCPP correctly identified simulated relationships. It also produced more accurate and precise parameter estimates than the classical univariate Neyman-Scott process model. We also used the MCPP to quantify proposed configurations and explore new ones in human dental plaque biofilm image data. MCPP models quantified simultaneous clustering of Streptococcus and Porphyromonas around Corynebacterium and of Pasteurellaceae around Streptococcus and successfully captured hypothesized structures for all taxa. Further exploration suggested the presence of clustering between Fusobacterium and Leptotrichia, a previously unreported relationship.
The extensive use of HPC infrastructures and frameworks for running dataintensive applications has led to a growing interest in data partitioning techniques and strategies. In fact, application performance can be heavily affected by how data are partitioned, which in turn depends on the selected size for data blocks, i.e. the block size. Therefore, finding an effective partitioning, i.e. a suitable block size, is a key strategy to speed-up parallel data-intensive applications and increase scalability. This paper describes a methodology, namely BLEST-ML (BLock size ESTimation through Machine Learning), for block size estimation that relies on supervised machine learning techniques. The proposed methodology was evaluated by designing an implementation tailored to dislib, a distributed computing library highly focused on machine learning algorithms built on top of the PyCOMPSs framework. We assessed the effectiveness of the provided implementation through an extensive experimental evaluation considering different algorithms from dislib, datasets, and infrastructures, including the MareNostrum 4 supercomputer. The results we obtained show the ability of BLEST-ML to efficiently determine a suitable way to split a given dataset, thus providing a proof of its applicability to enable the efficient execution of data-parallel applications in high performance environments.
SDRDPy is a desktop application that allows experts an intuitive graphic and tabular representation of the knowledge extracted by any supervised descriptive rule discovery algorithm. The application is able to provide an analysis of the data showing the relevant information of the data set and the relationship between the rules, data and the quality measures associated for each rule regardless of the tool where algorithm has been executed. All of the information is presented in a user-friendly application in order to facilitate expert analysis and also the exportation of reports in different formats.
With the development and popularity of sensors installed in manufacturing systems, complex data are collected during manufacturing processes, which brings challenges for traditional process control methods. This paper proposes a novel process control and monitoring method for the complex structure of high-dimensional image-based overlay errors (modeled in tensor form), which are collected in semiconductor manufacturing processes. The proposed method aims to reduce overlay errors using limited control recipes. We first build a high-dimensional process model and propose different tensor-on-vector regression algorithms to estimate parameters in the model to alleviate the curse of dimensionality. Then, based on the estimate of tensor parameters, the exponentially weighted moving average (EWMA) controller for tensor data is designed whose stability is theoretically guaranteed. Considering the fact that low-dimensional control recipes cannot compensate for all high-dimensional disturbances on the image, control residuals are monitored to prevent significant drifts of uncontrollable high-dimensional disturbances. Through extensive simulations and real case studies, the performances of parameter estimation algorithms and the EWMA controller in tensor space are evaluated. Compared with existing image-based feedback controllers, the superiority of our method is verified especially when disturbances are not stable.
In statistical inference, retrodiction is the act of inferring potential causes in the past based on knowledge of the effects in the present and the dynamics leading to the present. Retrodiction is applicable even when the dynamics is not reversible, and it agrees with the reverse dynamics when it exists, so that retrodiction may be viewed as an extension of inversion, i.e., time-reversal. Recently, an axiomatic definition of retrodiction has been made in a way that is applicable to both classical and quantum probability using ideas from category theory. Almost simultaneously, a framework for information flow in in terms of semicartesian categories has been proposed in the setting of categorical probability theory. Here, we formulate a general definition of retrodiction to add to the information flow axioms in semicartesian categories, thus providing an abstract framework for retrodiction beyond classical and quantum probability theory. More precisely, we extend Bayesian inference, and more generally Jeffrey's probability kinematics, to arbitrary semicartesian categories.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.