Recently, skeleton-based human action has become a hot research topic because the compact representation of human skeletons brings new blood to this research domain. As a result, researchers began to notice the importance of using RGB or other sensors to analyze human action by extracting skeleton information. Leveraging the rapid development of deep learning (DL), a significant number of skeleton-based human action approaches have been presented with fine-designed DL structures recently. However, a well-trained DL model always demands high-quality and sufficient data, which is hard to obtain without costing high expenses and human labor. In this paper, we introduce a novel data augmentation method for skeleton-based action recognition tasks, which can effectively generate high-quality and diverse sequential actions. In order to obtain natural and realistic action sequences, we propose denoising diffusion probabilistic models (DDPMs) that can generate a series of synthetic action sequences, and their generation process is precisely guided by a spatial-temporal transformer (ST-Trans). Experimental results show that our method outperforms the state-of-the-art (SOTA) motion generation approaches on different naturality and diversity metrics. It proves that its high-quality synthetic data can also be effectively deployed to existing action recognition models with significant performance improvement.
The main objective of this research paper is to investigate the local convergence characteristics of Model-agnostic Meta-learning (MAML) when applied to linear system quadratic optimal control (LQR). MAML and its variations have become popular techniques for quickly adapting to new tasks by leveraging previous learning knowledge in areas like regression, classification, and reinforcement learning. However, its theoretical guarantees remain unknown due to non-convexity and its structure, making it even more challenging to ensure stability in the dynamic system setting. This study focuses on exploring MAML in the LQR setting, providing its local convergence guarantees while maintaining the stability of the dynamical system. The paper also presents simple numerical results to demonstrate the convergence properties of MAML in LQR tasks.
Optimization-based methods are commonly applied in autonomous driving trajectory planners, which transform the continuous-time trajectory planning problem into a finite nonlinear program with constraints imposed at finite collocation points. However, potential violations between adjacent collocation points can occur. To address this issue thoroughly, we propose a safety-guaranteed collision-avoidance model to mitigate collision risks within optimization-based trajectory planners. This model introduces an embodied footprint, an enlarged representation of the vehicle's nominal footprint. If the embodied footprints do not collide with obstacles at finite collocation points, then the ego vehicle's nominal footprint is guaranteed to be collision-free at any of the infinite moments between adjacent collocation points. According to our theoretical analysis, we define the geometric size of an embodied footprint as a simple function of vehicle velocity and curvature. Particularly, we propose a trajectory optimizer with the embodied footprints that can theoretically set an appropriate number of collocation points prior to the optimization process. We conduct this research to enhance the foundation of optimization-based planners in robotics. Comparative simulations and field tests validate the completeness, solution speed, and solution quality of our proposal.
In everyday life collaboration tasks between human operators and robots, the former necessitate simple ways for programming new skills, the latter have to show adaptive capabilities to cope with environmental changes. The joint use of visual servoing and imitation learning allows us to pursue the objective of realizing friendly robotic interfaces that (i) are able to adapt to the environment thanks to the use of visual perception and (ii) avoid explicit programming thanks to the emulation of previous demonstrations. This work aims to exploit imitation learning for the visual servoing paradigm to address the specific problem of tracking moving objects. In particular, we show that it is possible to infer from data the compensation term required for realizing the tracking controller, avoiding the explicit implementation of estimators or observers. The effectiveness of the proposed method has been validated through simulations with a robotic manipulator.
Global pandemic due to the spread of COVID-19 has post challenges in a new dimension on facial recognition, where people start to wear masks. Under such condition, the authors consider utilizing machine learning in image inpainting to tackle the problem, by complete the possible face that is originally covered in mask. In particular, autoencoder has great potential on retaining important, general features of the image as well as the generative power of the generative adversarial network (GAN). The authors implement a combination of the two models, context encoders and explain how it combines the power of the two models and train the model with 50,000 images of influencers faces and yields a solid result that still contains space for improvements. Furthermore, the authors discuss some shortcomings with the model, their possible improvements, as well as some area of study for future investigation for applicative perspective, as well as directions to further enhance and refine the model.
Tensor network techniques, known for their low-rank approximation ability that breaks the curse of dimensionality, are emerging as a foundation of new mathematical methods for ultra-fast numerical solutions of high-dimensional Partial Differential Equations (PDEs). Here, we present a mixed Tensor Train (TT)/Quantized Tensor Train (QTT) approach for the numerical solution of time-independent Boltzmann Neutron Transport equations (BNTEs) in Cartesian geometry. Discretizing a realistic three-dimensional (3D) BNTE by (i) diamond differencing, (ii) multigroup-in-energy, and (iii) discrete ordinate collocation leads to huge generalized eigenvalue problems that generally require a matrix-free approach and large computer clusters. Starting from this discretization, we construct a TT representation of the PDE fields and discrete operators, followed by a QTT representation of the TT cores and solving the tensorized generalized eigenvalue problem in a fixed-point scheme with tensor network optimization techniques. We validate our approach by applying it to two realistic examples of 3D neutron transport problems, currently solved by the PARallel TIme-dependent SN (PARTISN) solver. We demonstrate that our TT/QTT method, executed on a standard desktop computer, leads to a yottabyte compression of the memory storage, and more than 7500 times speedup with a discrepancy of less than 1e-5 when compared to the PARTISN solution.
Based on developer needs and usage scenarios, API (Application Programming Interface) recommendation is the process of assisting developers in finding the required API among numerous candidate APIs. Previous studies mainly modeled API recommendation as the recommendation task, which can recommend multiple candidate APIs for the given query, and developers may not yet be able to find what they need. Motivated by the neural machine translation research domain, we can model this problem as the generation task, which aims to directly generate the required API for the developer query. After our preliminary investigation, we find the performance of this intuitive approach is not promising. The reason is that there exists an error when generating the prefixes of the API. However, developers may know certain API prefix information during actual development in most cases. Therefore, we model this problem as the automatic completion task and propose a novel approach APICom based on prompt learning, which can generate API related to the query according to the prompts (i.e., API prefix information). Moreover, the effectiveness of APICom highly depends on the quality of the training dataset. In this study, we further design a novel gradient-based adversarial training method {\atpart} for data augmentation, which can improve the normalized stability when generating adversarial examples. To evaluate the effectiveness of APICom, we consider a corpus of 33k developer queries and corresponding APIs. Compared with the state-of-the-art baselines, our experimental results show that APICom can outperform all baselines by at least 40.02\%, 13.20\%, and 16.31\% in terms of the performance measures EM@1, MRR, and MAP. Finally, our ablation studies confirm the effectiveness of our component setting (such as our designed adversarial training method, our used pre-trained model, and prompt learning) in APICom.
Bilevel optimization enjoys a wide range of applications in hyper-parameter optimization, meta-learning and reinforcement learning. However, bilevel optimization problems are difficult to solve. Recent progress on scalable bilevel algorithms mainly focuses on bilevel optimization problems where the lower-level objective is either strongly convex or unconstrained. In this work, we tackle the bilevel problem through the lens of the penalty method. We show that under certain conditions, the penalty reformulation recovers the solutions of the original bilevel problem. Further, we propose the penalty-based bilevel gradient descent (PBGD) algorithm and establish its finite-time convergence for the constrained bilevel problem without lower-level strong convexity. Experiments showcase the efficiency of the proposed PBGD algorithm.
Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.