亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present Groebner.jl, a Julia package for computing Groebner bases with the F4 algorithm. Groebner.jl is an efficient, portable, and open-source software. Groebner.jl works over integers modulo a prime and over the rationals, supports basic multi-threading, and specializes in computation in the degree reverse lexicographical monomial ordering. The implementation incorporates various symbolic computation techniques and leverages the Julia type system and tooling, which allows Groebner.jl to compete with the existing state of the art, in many instances outperform it, and exceed them in extensibility. Groebner.jl is freely available at //github.com/sumiya11/Groebner.jl.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Reservoir computing is a machine learning framework that has been shown to be able to replicate the chaotic attractor, including the fractal dimension and the entire Lyapunov spectrum, of the dynamical system on which it is trained. We quantitatively relate the generalized synchronization dynamics of a driven reservoir during the training stage to the performance of the trained reservoir computer at the attractor reconstruction task. We show that, in order to obtain successful attractor reconstruction and Lyapunov spectrum estimation, the largest conditional Lyapunov exponent of the driven reservoir must be significantly more negative than the most negative Lyapunov exponent of the target system. We also find that the maximal conditional Lyapunov exponent of the reservoir depends strongly on the spectral radius of the reservoir adjacency matrix, and therefore, for attractor reconstruction and Lyapunov spectrum estimation, small spectral radius reservoir computers perform better in general. Our arguments are supported by numerical examples on well-known chaotic systems.

Multi-task robot learning holds significant importance in tackling diverse and complex scenarios. However, current approaches are hindered by performance issues and difficulties in collecting training datasets. In this paper, we propose GeRM (Generalist Robotic Model). We utilize offline reinforcement learning to optimize data utilization strategies to learn from both demonstrations and sub-optimal data, thus surpassing the limitations of human demonstrations. Thereafter, we employ a transformer-based VLA network to process multi-modal inputs and output actions. By introducing the Mixture-of-Experts structure, GeRM allows faster inference speed with higher whole model capacity, and thus resolves the issue of limited RL parameters, enhancing model performance in multi-task learning while controlling computational costs. Through a series of experiments, we demonstrate that GeRM outperforms other methods across all tasks, while also validating its efficiency in both training and inference processes. Additionally, we uncover its potential to acquire emergent skills. Additionally, we contribute the QUARD-Auto dataset, collected automatically to support our training approach and foster advancements in multi-task quadruped robot learning. This work presents a new paradigm for reducing the cost of collecting robot data and driving progress in the multi-task learning community.

This research's primary motivation of this study is to address the high hardware and computational demands typically associated with LLMs.Therefore,our goal is to find a balance between model lightness and performance,striving to maximize performance while using a comparatively lightweight model. Hyacinth6B was developed with this objective in mind,aiming to fully leverage the core capabilities of LLMs without incurring substantial resource costs, effectively pushing the boundaries of smaller model's performance. The training approach involves parameter efficient finetuning using the LoRA method.

Regent is an implicitly parallel programming language that allows the development of a single codebase for heterogeneous platforms targeting CPUs and GPUs. This paper presents the development of a parallel meshfree solver in Regent for two-dimensional inviscid compressible flows. The meshfree solver is based on the least squares kinetic upwind method. Example codes are presented to show the difference between the Regent and CUDA-C implementations of the meshfree solver on a GPU node. For CPU parallel computations, details are presented on how the data communication and synchronisation are handled by Regent and Fortran+MPI codes. The Regent solver is verified by applying it to the standard test cases for inviscid flows. Benchmark simulations are performed on coarse to very fine point distributions to assess the solver's performance. The computational efficiency of the Regent solver on an A100 GPU is compared with an equivalent meshfree solver written in CUDA-C. The codes are then profiled to investigate the differences in their performance. The performance of the Regent solver on CPU cores is compared with an equivalent explicitly parallel Fortran meshfree solver based on MPI. Scalability results are shown to offer insights into performance.

It has been shown that unclocked, recurrent networks of Boolean gates in FPGAs can be used for low-SWaP reservoir computing. In such systems, topology and node functionality of the network are randomly initialized. To create a network that solves a task, weights are applied to output nodes and learning is achieved by adjusting those weights with conventional machine learning methods. However, performance is often limited compared to networks where all parameters are learned. Herein, we explore an alternative learning approach for unclocked, recurrent networks in FPGAs. We use evolutionary computation to evolve the Boolean functions of network nodes. In one type of implementation the output nodes are used directly to perform a task and all learning is via evolution of the network's node functions. In a second type of implementation a back-end classifier is used as in traditional reservoir computing. In that case, both evolution of node functions and adjustment of output node weights contribute to learning. We demonstrate the practicality of node function evolution, obtaining an accuracy improvement of ~30% on an image classification task while processing at a rate of over three million samples per second. We additionally demonstrate evolvability of network memory and dynamic output signals.

This paper introduces kDGLM, an R package designed for Bayesian analysis of Generalized Dynamic Linear Models (GDLM), with a primary focus on both uni- and multivariate exponential families. Emphasizing sequential inference for time series data, the kDGLM package provides comprehensive support for fitting, smoothing, monitoring, and feed-forward interventions. The methodology employed by kDGLM, as proposed in Alves et al. (2024), seamlessly integrates with well-established techniques from the literature, particularly those used in (Gaussian) Dynamic Models. These include discount strategies, autoregressive components, transfer functions, and more. Leveraging key properties of the Kalman filter and smoothing, kDGLM exhibits remarkable computational efficiency, enabling virtually instantaneous fitting times that scale linearly with the length of the time series. This characteristic makes it an exceptionally powerful tool for the analysis of extended time series. For example, when modeling monthly hospital admissions in Brazil due to gastroenteritis from 2010 to 2022, the fitting process took a mere 0.11s. Even in a spatial-time variant of the model (27 outcomes, 110 latent states, and 156 months, yielding 17,160 parameters), the fitting time was only 4.24s. Currently, the kDGLM package supports a range of distributions, including univariate Normal (unknown mean and observational variance), bivariate Normal (unknown means, observational variances, and correlation), Poisson, Gamma (known shape and unknown mean), and Multinomial (known number of trials and unknown event probabilities). Additionally, kDGLM allows the joint modeling of multiple time series, provided each series follows one of the supported distributions. Ongoing efforts aim to continuously expand the supported distributions.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.

Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.

北京阿比特科技有限公司