亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) have made significant advancements in natural language processing and are concurrently extending the language ability to other modalities, such as speech and vision. Nevertheless, most of the previous work focuses on prompting LLMs with perception abilities like auditory comprehension, and the effective approach for augmenting LLMs with speech synthesis capabilities remains ambiguous. In this paper, we conduct a comprehensive empirical exploration of boosting LLMs with the ability to generate speech, by combining pre-trained LLM LLaMA/OPT and text-to-speech synthesis model VALL-E. We compare three integration methods between LLMs and speech synthesis models, including directly fine-tuned LLMs, superposed layers of LLMs and VALL-E, and coupled LLMs and VALL-E using LLMs as a powerful text encoder. Experimental results show that, using LoRA method to fine-tune LLMs directly to boost the speech synthesis capability does not work well, and superposed LLMs and VALL-E can improve the quality of generated speech both in speaker similarity and word error rate (WER). Among these three methods, coupled methods leveraging LLMs as the text encoder can achieve the best performance, making it outperform original speech synthesis models with a consistently better speaker similarity and a significant (10.9%) WER reduction.

相關內容

語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)(Speech Synthesis),也稱為文語(yu)(yu)(yu)(yu)轉換(Text-to-Speech, TTS,它是(shi)將任意的輸入文本(ben)轉換成(cheng)(cheng)自(zi)(zi)然(ran)流暢的語(yu)(yu)(yu)(yu)音(yin)輸出。語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)涉及(ji)到(dao)人工智能、心理(li)學(xue)、聲學(xue)、語(yu)(yu)(yu)(yu)言學(xue)、數字信(xin)(xin)號(hao)處理(li)、計算機(ji)科(ke)學(xue)等多個學(xue)科(ke)技(ji)術(shu),是(shi)信(xin)(xin)息處理(li)領域中(zhong)的一項前(qian)(qian)沿技(ji)術(shu)。 隨(sui)著計算機(ji)技(ji)術(shu)的不斷提高,語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)技(ji)術(shu)從早期(qi)的共振(zhen)峰合(he)(he)(he)成(cheng)(cheng),逐步發(fa)展(zhan)為波(bo)形拼接合(he)(he)(he)成(cheng)(cheng)和統(tong)計參數語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng),再發(fa)展(zhan)到(dao)混合(he)(he)(he)語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng);合(he)(he)(he)成(cheng)(cheng)語(yu)(yu)(yu)(yu)音(yin)的質量、自(zi)(zi)然(ran)度已經(jing)得到(dao)明顯提高,基本(ben)能滿(man)足(zu)一些(xie)特定場(chang)合(he)(he)(he)的應(ying)用(yong)需求。目前(qian)(qian),語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)技(ji)術(shu)在(zai)銀行、醫院等的信(xin)(xin)息播報系統(tong)、汽車導航系統(tong)、自(zi)(zi)動應(ying)答呼叫中(zhong)心等都有廣泛(fan)應(ying)用(yong),取得了巨大的經(jing)濟效益(yi)。 另外,隨(sui)著智能手機(ji)、MP3、PDA 等與(yu)我們(men)生活密切相關的媒介的大量涌現,語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)的應(ying)用(yong)也在(zai)逐漸向娛樂、語(yu)(yu)(yu)(yu)音(yin)教學(xue)、康復治療等領域深(shen)入。可(ke)以說語(yu)(yu)(yu)(yu)音(yin)合(he)(he)(he)成(cheng)(cheng)正在(zai)影(ying)響著人們(men)生活的方方面面。

The recent advancements in generative language models have demonstrated their ability to memorize knowledge from documents and recall knowledge to respond to user queries effectively. Building upon this capability, we propose to enable multimodal large language models (MLLMs) to memorize and recall images within their parameters. Given a user query for visual content, the MLLM is anticipated to "recall" the relevant image from its parameters as the response. Achieving this target presents notable challenges, including inbuilt visual memory and visual recall schemes within MLLMs. To address these challenges, we introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images and involves two training steps: learning to memorize and learning to retrieve. The first step focuses on training the MLLM to memorize the association between images and their respective identifiers. The latter step teaches the MLLM to generate the corresponding identifier of the target image, given the textual query input. By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches. The experiments demonstrate that the generative paradigm performs effectively and efficiently even with large-scale image candidate sets.

Recent large language models (LLMs) have shown remarkable performance in aligning generated text with user intentions across various tasks. When it comes to long-form text generation, there has been a growing interest in generation from a discourse coherence perspective. However, existing lexical or semantic metrics such as BLEU, ROUGE, BertScore cannot effectively capture the discourse coherence. The development of discourse-specific automatic evaluation methods for assessing the output of LLMs warrants greater focus and exploration. In this paper, we present a novel automatic metric designed to quantify the discourse divergence between two long-form articles. Extensive experiments on three datasets from representative domains demonstrate that our metric aligns more closely with human preferences and GPT-4 coherence evaluation, outperforming existing evaluation methods.

Modern language models (LMs) have gained widespread acceptance in everyday and professional contexts, particularly in programming. An essential procedure enabling this adoption is instruction tuning, which substantially enhances LMs' practical utility by training them to follow user instructions and human preferences. However, existing instruction tuning schemes overlook a crucial aspect: the security of generated code. As a result, even the state-of-the-art instruction-tuned LMs frequently produce unsafe code, posing significant security risks. In this work, we introduce SafeCoder to address this gap. SafeCoder performs security-centric fine-tuning using a diverse and high-quality dataset that we collected using an automated pipeline. We integrate the security fine-tuning with standard instruction tuning, to facilitate a joint optimization of both security and utility. Despite its simplicity, we show that SafeCoder is effective across a variety of popular LMs and datasets. It is able to drastically improve security (by about 30%), while preserving utility.

Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance. However, LLM-powered writing systems can frustrate users due to their limited personalization and control, which can be exacerbated when users lack experience with prompt engineering. We see design as one way to address these challenges and introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization. GhostWriter leverages LLMs to learn the user's intended writing style implicitly as they write, while allowing explicit teaching moments through manual style edits and annotations. We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style. From this study, we present insights regarding people's relationship with AI-assisted writing and offer design recommendations for future work.

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.

北京阿比特科技有限公司