Sensor measurements are mission-critical for monitoring and controlling power systems because they provide real-time insight into the grid operating condition; however, confidence in these insights depends greatly on the quality of the sensor data. Uncertainty in sensor measurements is an intrinsic aspect of the measurement process. In this paper, we develop an analytical method to quantify the impact of measurement uncertainties in numerical methods that employ the Koopman operator to identify nonlinear dynamics based on recorded data. In particular, we quantify the confidence interval of each element in the push-forward matrix from which a subset of the Koopman operator's discrete spectrum is estimated. We provide a detailed numerical analysis of the developed method applied to numerical simulations and field data collected from experiments conducted in a megawatt-scale facility at the National Renewable Energy Laboratory.
Given the high spectral efficiency, holographic multiple-input multiple-output (MIMO) technology holds promise for enhancing both sensing and communication capabilities. However, accurately characterizing its performance poses a challenge due to the spatial correlation induced by densely spaced antennas. In this paper, a holographic MIMO (HMIMO) based integrated sensing and communications (ISAC) framework is proposed for both downlink and uplink scenarios. The spacial correlation is incorporated in the communication channel modeling, while an accurate spherical wave-based model is utilized to characterize sensing link. By considering both instantaneous channel state information (CSI) and statistical CSI, closed-form expressions are derived for sensing rates (SRs), communication rates (CRs), and outage probabilities under different ISAC designs to investigate the theoretical performance limits of the proposed HISAC framework. Further insights are gained by examining high signal-to-noise ratio slopes and diversity orders. Specifically, i) for the downlink case, a sensing-centric (S-C) design and a communications-centric (C-C) design are investigated based on different beamforming strategies, and a Pareto optimal design is proposed to characterize the attainable SR-CR region; ii) for the uplink case, the S-C design and the C-C design are distinguished by the interference cancellation order of the communication signal and the sensing signal, and the rate region is obtained through a time-sharing strategy. Numerical results reveal that HMIMO based ISAC (HISAC) systems outperform both conventional MIMO based ISAC systems and HMIMO based frequency-division sensing and communications systems, underscoring the superior performance of HISAC.
Explainability techniques are rapidly being developed to improve human-AI decision-making across various cooperative work settings. Consequently, previous research has evaluated how decision-makers collaborate with imperfect AI by investigating appropriate reliance and task performance with the aim of designing more human-centered computer-supported collaborative tools. Several human-centered explainable AI (XAI) techniques have been proposed in hopes of improving decision-makers' collaboration with AI; however, these techniques are grounded in findings from previous studies that primarily focus on the impact of incorrect AI advice. Few studies acknowledge the possibility of the explanations being incorrect even if the AI advice is correct. Thus, it is crucial to understand how imperfect XAI affects human-AI decision-making. In this work, we contribute a robust, mixed-methods user study with 136 participants to evaluate how incorrect explanations influence humans' decision-making behavior in a bird species identification task, taking into account their level of expertise and an explanation's level of assertiveness. Our findings reveal the influence of imperfect XAI and humans' level of expertise on their reliance on AI and human-AI team performance. We also discuss how explanations can deceive decision-makers during human-AI collaboration. Hence, we shed light on the impacts of imperfect XAI in the field of computer-supported cooperative work and provide guidelines for designers of human-AI collaboration systems.
Accurately estimating a Health Index (HI) from condition monitoring data (CM) is essential for reliable and interpretable prognostics and health management (PHM) in complex systems. In most scenarios, complex systems operate under varying operating conditions and can exhibit different fault modes, making unsupervised inference of an HI from CM data a significant challenge. Hybrid models combining prior knowledge about degradation with deep learning models have been proposed to overcome this challenge. However, previously suggested hybrid models for HI estimation usually rely heavily on system-specific information, limiting their transferability to other systems. In this work, we propose an unsupervised hybrid method for HI estimation that integrates general knowledge about degradation into the convolutional autoencoder's model architecture and learning algorithm, enhancing its applicability across various systems. The effectiveness of the proposed method is demonstrated in two case studies from different domains: turbofan engines and lithium batteries. The results show that the proposed method outperforms other competitive alternatives, including residual-based methods, in terms of HI quality and their utility for Remaining Useful Life (RUL) predictions. The case studies also highlight the comparable performance of our proposed method with a supervised model trained with HI labels.
In recent years, the field of generative artificial intelligence, particularly in the domain of image generation, has exerted a profound influence on society. Despite the capability of AI to produce images of high quality, the augmentation of users' drawing abilities through the provision of drawing support systems emerges as a challenging issue. In this study, we propose that a cognitive factor, specifically, the size of the canvas, may exert a considerable influence on the outcomes of imitative drawing sketches when utilizing reference images. To investigate this hypothesis, a web based drawing interface was utilized, designed specifically to evaluate the effect of the canvas size's proportionality to the reference image on the fidelity of the drawings produced. The findings from our research lend credence to the hypothesis that a drawing interface, featuring a canvas whose dimensions closely match those of the reference image, markedly improves the precision of user-generated sketches.
In this critical survey, we analyze typical claims on the relationship between explainable AI (XAI) and fairness to disentangle the multidimensional relationship between these two concepts. Based on a systematic literature review and a subsequent qualitative content analysis, we identify seven archetypal claims from 175 scientific articles on the alleged fairness benefits of XAI. We present crucial caveats with respect to these claims and provide an entry point for future discussions around the potentials and limitations of XAI for specific fairness desiderata. Importantly, we notice that claims are often (i) vague and simplistic, (ii) lacking normative grounding, or (iii) poorly aligned with the actual capabilities of XAI. We suggest to conceive XAI not as an ethical panacea but as one of many tools to approach the multidimensional, sociotechnical challenge of algorithmic fairness. Moreover, when making a claim about XAI and fairness, we emphasize the need to be more specific about what kind of XAI method is used, which fairness desideratum it refers to, how exactly it enables fairness, and who is the stakeholder that benefits from XAI.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.