亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the computation of free energy-like quantities for diffusions in high dimension, when resorting to Monte Carlo simulation is necessary. Such stochastic computations typically suffer from high variance, in particular in a low noise regime, because the expectation is dominated by rare trajectories for which the observable reaches large values. Although importance sampling, or tilting of trajectories, is now a standard technique for reducing the variance of such estimators, quantitative criteria for proving that a given control reduces variance are scarce, and often do not apply to practical situations. The goal of this work is to provide a quantitative criterion for assessing whether a given bias reduces variance, and at which order. We rely for this on a recently introduced notion of stochastic solution for Hamilton-Jacobi-Bellman equations. Based on this tool, we introduce the notion of k-stochastic viscosity approximation of a HJB equation. We next prove that such approximate solutions are associated with estimators having a relative variance of order k-1 at log-scale. Finally, in order to show that our definition is relevant, we provide examples of stochastic viscosity approximations of order one and two, with a numerical illustration confirming our theoretical findings.

相關內容

We introduce a class of Markov chains, that contains the model of stochastic approximation by averaging and non-averaging. Using martingale approximation method, we establish various deviation inequalities for separately Lipschitz functions of such a chain, with different moment conditions on some dominating random variables of martingale differences.Finally, we apply these inequalities to the stochastic approximation by averaging and empirical risk minimisation.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \cite{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game in computational complexity $O(k^{14}\max\{a,b\}^{13})$, receiving substantial media coverage (e.g. \cite{Insider}, \cite{NSF}, \cite{ScienceDaily}). As of this work, this is the only known algorithm (to our knowledge) for the Colonel Blotto game with general parameters. In this work, we present the first known algorithm to compute $\eps$-approximate NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\eps^{-4} k^8 \max\{a,b\})$ for arbitrary settings of these parameters. Moreover, this algorithm is the first known efficient algorithm to compute approximate coarse correlated equilibrium strategies in the multiplayer Colonel Blotto game (when there are more than two colonels) with runtime $\widetilde{O}(\ell \eps^{-4} k^8 \max\{a,b\} + \ell^2 \eps^{-2} k^3 \max\{a,b\})$. Prior to this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by implicitly performing multiplicative weights update over the exponentially many strategies available to each player.

In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.

We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form $\min_{x\in\mathcal{X}} \mathbb{E}[F(x,\xi)]$, when the given data is a finite independent sample selected according to $\xi$. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.

Motivated by the problem of online canonical correlation analysis, we propose the \emph{Stochastic Scaled-Gradient Descent} (SSGD) algorithm for minimizing the expectation of a stochastic function over a generic Riemannian manifold. SSGD generalizes the idea of projected stochastic gradient descent and allows the use of scaled stochastic gradients instead of stochastic gradients. In the special case of a spherical constraint, which arises in generalized eigenvector problems, we establish a nonasymptotic finite-sample bound of $\sqrt{1/T}$, and show that this rate is minimax optimal, up to a polylogarithmic factor of relevant parameters. On the asymptotic side, a novel trajectory-averaging argument allows us to achieve local asymptotic normality with a rate that matches that of Ruppert-Polyak-Juditsky averaging. We bring these ideas together in an application to online canonical correlation analysis, deriving, for the first time in the literature, an optimal one-time-scale algorithm with an explicit rate of local asymptotic convergence to normality. Numerical studies of canonical correlation analysis are also provided for synthetic data.

The saddlepoint approximation gives an approximation to the density of a random variable in terms of its moment generating function. When the underlying random variable is itself the sum of $n$ unobserved i.i.d. terms, the basic classical result is that the relative error in the density is of order $1/n$. If instead the approximation is interpreted as a likelihood and maximised as a function of model parameters, the result is an approximation to the maximum likelihood estimate (MLE) that can be much faster to compute than the true MLE. This paper proves the analogous basic result for the approximation error between the saddlepoint MLE and the true MLE: subject to certain explicit identifiability conditions, the error has asymptotic size $O(1/n^2)$ for some parameters, and $O(1/n^{3/2})$ or $O(1/n)$ for others. In all three cases, the approximation errors are asymptotically negligible compared to the inferential uncertainty. The proof is based on a factorisation of the saddlepoint likelihood into an exact and approximate term, along with an analysis of the approximation error in the gradient of the log-likelihood. This factorisation also gives insight into alternatives to the saddlepoint approximation, including a new and simpler saddlepoint approximation, for which we derive analogous error bounds. As a corollary of our results, we also obtain the asymptotic size of the MLE error approximation when the saddlepoint approximation is replaced by the normal approximation.

Estimating the mixing density of a mixture distribution remains an interesting problem in statistics literature. Using a stochastic approximation method, Newton and Zhang (1999) introduced a fast recursive algorithm for estimating the mixing density of a mixture. Under suitably chosen weights the stochastic approximation estimator converges to the true solution. In Tokdar et. al. (2009) the consistency of this recursive estimation method was established. However, the proof of consistency of the resulting estimator used independence among observations as an assumption. Here, we extend the investigation of performance of Newton's algorithm to several dependent scenarios. We first prove that the original algorithm under certain conditions remains consistent when the observations are arising form a weakly dependent process with fixed marginal with the target mixture as the marginal density. For some of the common dependent structures where the original algorithm is no longer consistent, we provide a modification of the algorithm that generates a consistent estimator.

Continuous determinantal point processes (DPPs) are a class of repulsive point processes on $\mathbb{R}^d$ with many statistical applications. Although an explicit expression of their density is known, it is too complicated to be used directly for maximum likelihood estimation. In the stationary case, an approximation using Fourier series has been suggested, but it is limited to rectangular observation windows and no theoretical results support it. In this contribution, we investigate a different way to approximate the likelihood by looking at its asymptotic behaviour when the observation window grows towards $\mathbb{R}^d$. This new approximation is not limited to rectangular windows, is faster to compute than the previous one, does not require any tuning parameter, and some theoretical justifications are provided. It moreover provides an explicit formula for estimating the asymptotic variance of the associated estimator. The performances are assessed in a simulation study on standard parametric models on $\mathbb{R}^d$ and compare favourably to common alternative estimation methods for continuous DPPs.

We use a numerical-analytic technique to construct a sequence of successive approximations to the solution of a system of fractional differential equations, subject to Dirichlet boundary conditions. We prove the uniform convergence of the sequence of approximations to a limit function, which is the unique solution to the boundary value problem under consideration, and give necessary and sufficient conditions for the existence of solutions. The obtained theoretical results are confirmed by a model example.

We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space. Focusing on a stochastic query model that provides noisy evaluations of the operator, we analyze a variance-reduced stochastic approximation scheme, and establish non-asymptotic bounds for both the operator defect and the estimation error, measured in an arbitrary semi-norm. In contrast to worst-case guarantees, our bounds are instance-dependent, and achieve the local asymptotic minimax risk non-asymptotically. For linear operators, contractivity can be relaxed to multi-step contractivity, so that the theory can be applied to problems like average reward policy evaluation problem in reinforcement learning. We illustrate the theory via applications to stochastic shortest path problems, two-player zero-sum Markov games, as well as policy evaluation and $Q$-learning for tabular Markov decision processes.

北京阿比特科技有限公司