亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study presents a comprehensive overview of PIML techniques in the context of condition monitoring. The central concept driving PIML is the incorporation of known physical laws and constraints into machine learning algorithms, enabling them to learn from available data while remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning, PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches. In this comprehensive survey, detailed examinations are performed with regard to the methodology by which known physical principles are integrated within machine learning frameworks, as well as their suitability for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct advantages and limitations of each methodology for the integration of physics within data-driven models are detailed, considering factors such as computational efficiency, model interpretability, and generalizability to different systems in condition monitoring and fault detection. Several case studies and works of literature utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition monitoring and associated challenges. This comprehensive survey helps form the foundation for future work in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing maintenance strategies, system reliability, and overall operational efficiency in engineering systems.

相關內容

Learning with rejection has been a prototypical model for studying the human-AI interaction on prediction tasks. Upon the arrival of a sample instance, the model first uses a rejector to decide whether to accept and use the AI predictor to make a prediction or reject and defer the sample to humans. Learning such a model changes the structure of the original loss function and often results in undesirable non-convexity and inconsistency issues. For the classification with rejection problem, several works develop consistent surrogate losses for the joint learning of the predictor and the rejector, while there have been fewer works for the regression counterpart. This paper studies the regression with rejection (RwR) problem and investigates a no-rejection learning strategy that uses all the data to learn the predictor. We first establish the consistency for such a strategy under the weak realizability condition. Then for the case without the weak realizability, we show that the excessive risk can also be upper bounded with the sum of two parts: prediction error and calibration error. Lastly, we demonstrate the advantage of such a proposed learning strategy with empirical evidence.

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

This work presents a Fourier analysis framework for the non-interactive source simulation (NISS) problem. Two distributed agents observe a pair of sequences $X^d$ and $Y^d$ drawn according to a joint distribution $P_{X^dY^d}$. The agents aim to generate outputs $U=f_d(X^d)$ and $V=g_d(Y^d)$ with a joint distribution sufficiently close in total variation to a target distribution $Q_{UV}$. Existing works have shown that the NISS problem with finite-alphabet outputs is decidable. For the binary-output NISS, an upper-bound to the input complexity was derived which is $O(\exp\operatorname{poly}(\frac{1}{\epsilon}))$. In this work, the input complexity and algorithm design are addressed in several classes of NISS scenarios. For binary-output NISS scenarios with doubly-symmetric binary inputs, it is shown that the input complexity is $\Theta(\log{\frac{1}{\epsilon}})$, thus providing a super-exponential improvement in input complexity. An explicit characterization of the simulating pair of functions is provided. For general finite-input scenarios, a constructive algorithm is introduced that explicitly finds the simulating functions $(f_d(X^d),g_d(Y^d))$. The approach relies on a novel Fourier analysis framework. Various numerical simulations of NISS scenarios with IID inputs are provided. Furthermore, to illustrate the general applicability of the Fourier framework, several examples with non-IID inputs, including entanglement-assisted NISS and NISS with Markovian inputs are provided.

This paper addresses the challenging problem of composite synchronization and learning control in a network of multi-agent robotic manipulator systems operating under heterogeneous nonlinear uncertainties within a leader-follower framework. A novel two-layer distributed adaptive learning control strategy is introduced, comprising a first-layer distributed cooperative estimator and a second-layer decentralized deterministic learning controller. The primary objective of the first layer is to facilitate each robotic agent's estimation of the leader's information. The second layer is responsible for both enabling individual robot agents to track desired reference trajectories and accurately identifying and learning their nonlinear uncertain dynamics. The proposed distributed learning control scheme represents an advancement in the existing literature due to its ability to manage robotic agents with completely uncertain dynamics including uncertain mass matrices. This framework allows the robotic control to be environment-independent which can be used in various settings, from underwater to space where identifying system dynamics parameters is challenging. The stability and parameter convergence of the closed-loop system are rigorously analyzed using the Lyapunov method. Numerical simulations conducted on multi-agent robot manipulators validate the effectiveness of the proposed scheme. The identified nonlinear dynamics can be saved and reused whenever the system restarts.

We consider the task of estimating a structural model of dynamic decisions by a human agent based upon the observable history of implemented actions and visited states. This problem has an inherent nested structure: in the inner problem, an optimal policy for a given reward function is identified while in the outer problem, a measure of fit is maximized. Several approaches have been proposed to alleviate the computational burden of this nested-loop structure, but these methods still suffer from high complexity when the state space is either discrete with large cardinality or continuous in high dimensions. Other approaches in the inverse reinforcement learning (IRL) literature emphasize policy estimation at the expense of reduced reward estimation accuracy. In this paper we propose a single-loop estimation algorithm with finite time guarantees that is equipped to deal with high-dimensional state spaces without compromising reward estimation accuracy. In the proposed algorithm, each policy improvement step is followed by a stochastic gradient step for likelihood maximization. We show that the proposed algorithm converges to a stationary solution with a finite-time guarantee. Further, if the reward is parameterized linearly, we show that the algorithm approximates the maximum likelihood estimator sublinearly. Finally, by using robotics control problems in MuJoCo and their transfer settings, we show that the proposed algorithm achieves superior performance compared with other IRL and imitation learning benchmarks.

Latent variable models are increasingly used in economics for high-dimensional categorical data like text and surveys. We demonstrate the effectiveness of Hamiltonian Monte Carlo (HMC) with parallelized automatic differentiation for analyzing such data in a computationally efficient and methodologically sound manner. Our new model, Supervised Topic Model with Covariates, shows that carefully modeling this type of data can have significant implications on conclusions compared to a simpler, frequently used, yet methodologically problematic, two-step approach. A simulation study and revisiting Bandiera et al. (2020)'s study of executive time use demonstrate these results. The approach accommodates thousands of parameters and doesn't require custom algorithms specific to each model, making it accessible for applied researchers

We report on the mechanization of (preference-based) conditional normative reasoning. Our focus is on Aqvist's system E for conditional obligation, and its extensions. Our mechanization is achieved via a shallow semantical embedding in Isabelle/HOL. We consider two possible uses of the framework. The first one is as a tool for meta-reasoning about the considered logic. We employ it for the automated verification of deontic correspondences (broadly conceived) and related matters, analogous to what has been previously achieved for the modal logic cube. The equivalence is automatically verified in one direction, leading from the property to the axiom. The second use is as a tool for assessing ethical arguments. We provide a computer encoding of a well-known paradox (or impossibility theorem) in population ethics, Parfit's repugnant conclusion. While some have proposed overcoming the impossibility theorem by abandoning the presupposed transitivity of ''better than'', our formalisation unveils a less extreme approach, suggesting among other things the option of weakening transitivity suitably rather than discarding it entirely. Whether the presented encoding increases or decreases the attractiveness and persuasiveness of the repugnant conclusion is a question we would like to pass on to philosophy and ethics.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司