Graph contrastive learning (GCL) has recently achieved substantial advancements. Existing GCL approaches compare two different ``views'' of the same graph in order to learn node/graph representations. The underlying assumption of these studies is that the graph augmentation strategy is capable of generating several different graph views such that the graph views are structurally different but semantically similar to the original graphs, and thus the ground-truth labels of the original and augmented graph/nodes can be regarded identical in contrastive learning. However, we observe that this assumption does not always hold. For instance, the deletion of a super-node within a social network can exert a substantial influence on the partitioning of communities for other nodes. Similarly, any perturbation to nodes or edges in a molecular graph will change the labels of the graph. Therefore, we believe that augmenting the graph, accompanied by an adaptation of the labels used for the contrastive loss, will facilitate the encoder to learn a better representation. Based on this idea, we propose ID-MixGCL, which allows the simultaneous interpolation of input nodes and corresponding identity labels to obtain soft-confidence samples, with a controllable degree of change, leading to the capture of fine-grained representations from self-supervised training on unlabeled graphs. Experimental results demonstrate that ID-MixGCL improves performance on graph classification and node classification tasks, as demonstrated by significant improvements on the Cora, IMDB-B, IMDB-M, and PROTEINS datasets compared to state-of-the-art techniques, by 3-29% absolute points.
Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: //github.com/XiaoxinHe/TAPE.
Tremendous breakthroughs have been developed in Semi-Supervised Semantic Segmentation (S4) through contrastive learning. However, due to limited annotations, the guidance on unlabeled images is generated by the model itself, which inevitably exists noise and disturbs the unsupervised training process. To address this issue, we propose a robust contrastive-based S4 framework, termed the Probabilistic Representation Contrastive Learning (PRCL) framework to enhance the robustness of the unsupervised training process. We model the pixel-wise representation as Probabilistic Representations (PR) via multivariate Gaussian distribution and tune the contribution of the ambiguous representations to tolerate the risk of inaccurate guidance in contrastive learning. Furthermore, we introduce Global Distribution Prototypes (GDP) by gathering all PRs throughout the whole training process. Since the GDP contains the information of all representations with the same class, it is robust from the instant noise in representations and bears the intra-class variance of representations. In addition, we generate Virtual Negatives (VNs) based on GDP to involve the contrastive learning process. Extensive experiments on two public benchmarks demonstrate the superiority of our PRCL framework.
Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute-Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at //github.com/explanare/ravel.
Machine learning (ML) methods have been developing rapidly, but configuring and selecting proper methods to achieve a desired performance is increasingly difficult and tedious. To address this challenge, automated machine learning (AutoML) has emerged, which aims to generate satisfactory ML configurations for given tasks in a data-driven way. In this paper, we provide a comprehensive survey on this topic. We begin with the formal definition of AutoML and then introduce its principles, including the bi-level learning objective, the learning strategy, and the theoretical interpretation. Then, we summarize the AutoML practices by setting up the taxonomy of existing works based on three main factors: the search space, the search algorithm, and the evaluation strategy. Each category is also explained with the representative methods. Then, we illustrate the principles and practices with exemplary applications from configuring ML pipeline, one-shot neural architecture search, and integration with foundation models. Finally, we highlight the emerging directions of AutoML and conclude the survey.
Self-supervised learning (SSL) has achieved remarkable success across various speech-processing tasks. To enhance its efficiency, previous works often leverage the use of compression techniques. A notable recent attempt is DPHuBERT, which applies joint knowledge distillation (KD) and structured pruning to learn a significantly smaller SSL model. In this paper, we contribute to this research domain by introducing SKILL, a novel method that conducts distillation across groups of layers instead of distilling individual arbitrarily selected layers within the teacher network. The identification of the layers to distill is achieved through a hierarchical clustering procedure applied to layer similarity measures. Extensive experiments demonstrate that our distilled version of WavLM Base+ not only outperforms DPHuBERT but also achieves state-of-the-art results in the 30M parameters model class across several SUPERB tasks.
The relevant features for a machine learning task may arrive as one or more continuous streams of data. Serving machine learning models over streams of data creates a number of interesting systems challenges in managing data routing, time-synchronization, and rate control. This paper presents EdgeServe, a distributed streaming system that can serve predictions from machine learning models in real time. We evaluate EdgeServe on three streaming prediction tasks: (1) human activity recognition, (2) autonomous driving, and (3) network intrusion detection.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.