亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computing the exact optimal experimental design has been a longstanding challenge in various scientific fields. This problem, when formulated using a specific information function, becomes a mixed-integer nonlinear programming (MINLP) problem, which is typically NP-hard, thus making the computation of a globally optimal solution extremely difficult. The branch and bound (BnB) method is a widely used approach for solving such MINLPs, but its practical efficiency heavily relies on the ability to solve continuous relaxations effectively within the BnB search tree. In this paper, we propose a novel projected Newton framework, combining with a vertex exchange method for efficiently solving the associated subproblems, designed to enhance the BnB method. This framework offers strong convergence guarantees by utilizing recent advances in solving self-concordant optimization and convex quadratic programming problems. Extensive numerical experiments on A-optimal and D-optimal design problems, two of the most commonly used models, demonstrate the framework's promising numerical performance. Specifically, our framework significantly improves the efficiency of node evaluation within the BnB search tree and enhances the accuracy of solutions compared to state-of-the-art methods. The proposed framework is implemented in an open source Julia package called \texttt{PNOD.jl}, which opens up possibilities for its application in a wide range of real-world scenarios.

相關內容

Recently, there has been increasing interest in using Large Language Models (LLMs) to construct complex multi-agent systems to perform tasks such as compiling literature reviews, drafting consumer reports, and planning vacations. Many tools and libraries exist for helping create such systems, however none support recursive multi-agent systems -- where the models themselves flexibly decide when to delegate tasks and how to organize their delegation structure. In this work, we introduce ReDel: a toolkit for recursive multi-agent systems that supports custom tool-use, delegation schemes, event-based logging, and interactive replay in an easy-to-use web interface. We show that, using ReDel, we are able to easily identify potential areas of improvements through the visualization and debugging tools. Our code, documentation, and PyPI package are open-source and free to use under the MIT license at //github.com/zhudotexe/redel.

Recently, a series of diffusion-aware distillation algorithms have emerged to alleviate the computational overhead associated with the multi-step inference process of Diffusion Models (DMs). Current distillation techniques often dichotomize into two distinct aspects: i) ODE Trajectory Preservation; and ii) ODE Trajectory Reformulation. However, these approaches suffer from severe performance degradation or domain shifts. To address these limitations, we propose Hyper-SD, a novel framework that synergistically amalgamates the advantages of ODE Trajectory Preservation and Reformulation, while maintaining near-lossless performance during step compression. Firstly, we introduce Trajectory Segmented Consistency Distillation to progressively perform consistent distillation within pre-defined time-step segments, which facilitates the preservation of the original ODE trajectory from a higher-order perspective. Secondly, we incorporate human feedback learning to boost the performance of the model in a low-step regime and mitigate the performance loss incurred by the distillation process. Thirdly, we integrate score distillation to further improve the low-step generation capability of the model and offer the first attempt to leverage a unified LoRA to support the inference process at all steps. Extensive experiments and user studies demonstrate that Hyper-SD achieves SOTA performance from 1 to 8 inference steps for both SDXL and SD1.5. For example, Hyper-SDXL surpasses SDXL-Lightning by +0.68 in CLIP Score and +0.51 in Aes Score in the 1-step inference.

Artificial intelligence (AI) has played an increasingly important role in chemical research. However, most models currently used in chemistry are specialist models that require training and tuning for specific tasks. A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry. In its utmost form, such a generalist AI chemist could be referred to as Chemical General Intelligence. Large language models (LLMs) have recently logged tremendous success in the general domain of natural language processing, showing emerging task generalization and free-form dialogue capabilities. However, domain knowledge of chemistry is largely missing when training general-domain LLMs. The lack of such knowledge greatly hinders the performance of generalist LLMs in the field of chemistry. To this end, we develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions. As a result, it can understand and reason with chemical knowledge in free-form dialogue. Quantitative evaluations show that ChemDFM significantly surpasses most representative open-source LLMs. It outperforms GPT-4 on a great portion of chemical tasks, despite the substantial size difference. We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface (//huggingface.co/OpenDFM/ChemDFM-13B-v1.0).

Enhancing the modular structure of existing systems has attracted substantial research interest, focusing on two main methods: (1) software modularization and (2) identifying design issues (e.g., smells) as refactoring opportunities. However, re-modularization solutions often require extensive modifications to the original modules, and the design issues identified are generally too coarse to guide refactoring strategies. Combining the above two methods, this paper introduces a novel concept, PairSmell, which exploits modularization to pinpoint design issues necessitating refactoring. We concentrate on a granular but fundamental aspect of modularity principles -- modular relation (MR), i.e., whether a pair of entities are separated or collocated. The main assumption is that, if the actual MR of a pair violates its `apt MR', i.e., an MR agreed on by multiple modularization tools (as raters), it can be deemed likely a flawed architectural decision that necessitates further examination. To quantify and evaluate PairSmell, we conduct an empirical study on 20 C/C++ and Java projects, using 4 established modularization tools to identify two forms of PairSmell: inapt separated pairs InSep and inapt collocated pairs InCol. Our study on 260,003 instances reveals that their architectural impacts are substantial: (1) on average, 14.60% and 20.44% of software entities are involved in InSep and InCol MRs respectively; (2) InSep pairs are associated with 190% more co-changes than properly separated pairs, while InCol pairs are associated with 35% fewer co-changes than properly collocated pairs, both indicating a successful identification of modular structures detrimental to software quality; and (3) both forms of PairSmell persist across software evolution.

Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To mitigate this problem, we propose a new method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are required to annotate the source code of the statistical programs with the requirements for these methods. Through this annotation, they are reminded to check the requirements for statistical methods, including those that cannot be formally verified, such as the distribution of the unknown true population. Our software tool StatWhy automatically checks whether programmers have properly specified the requirements for the statistical methods, thereby identifying any missing requirements that need to be addressed. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs that conduct statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in various popular statistical hypothesis testing programs.

Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate high margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively and confidently use the logit margin to detect brittle decisions with such models. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to assess adversarial vulnerability in deployment scenarios efficiently.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司