Visual Speech Recognition (VSR) is the task of predicting spoken words from silent lip movements. VSR is regarded as a challenging task because of the insufficient information on lip movements. In this paper, we propose an Audio Knowledge empowered Visual Speech Recognition framework (AKVSR) to complement the insufficient speech information of visual modality by using audio modality. Different from the previous methods, the proposed AKVSR 1) utilizes rich audio knowledge encoded by a large-scale pretrained audio model, 2) saves the linguistic information of audio knowledge in compact audio memory by discarding the non-linguistic information from the audio through quantization, and 3) includes Audio Bridging Module which can find the best-matched audio features from the compact audio memory, which makes our training possible without audio inputs, once after the compact audio memory is composed. We validate the effectiveness of the proposed method through extensive experiments, and achieve new state-of-the-art performances on the widely-used LRS3 dataset.
Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.
Hallucinations pose a significant challenge to the reliability and alignment of Large Language Models (LLMs), limiting their widespread acceptance beyond chatbot applications. Despite ongoing efforts, hallucinations remain a prevalent challenge in LLMs. The detection of hallucinations itself is also a formidable task, frequently requiring manual labeling or constrained evaluations. This paper introduces an automated scalable framework that combines benchmarking LLMs' hallucination tendencies with efficient hallucination detection. We leverage LLMs to generate challenging tasks related to hypothetical phenomena, subsequently employing them as agents for efficient hallucination detection. The framework is domain-agnostic, allowing the use of any language model for benchmark creation or evaluation in any domain. We introduce the publicly available HypoTermQA Benchmarking Dataset, on which state-of-the-art models' performance ranged between 3% and 11%, and evaluator agents demonstrated a 6% error rate in hallucination prediction. The proposed framework provides opportunities to test and improve LLMs. Additionally, it has the potential to generate benchmarking datasets tailored to specific domains, such as law, health, and finance.
This groundbreaking study explores the expanse of Large Language Models (LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) across varied domains ranging from technology, finance, healthcare to education. Despite their established prowess in Natural Language Processing (NLP), these LLMs have not been systematically examined for their impact on domains such as fitness, and holistic well-being, urban planning, climate modelling as well as disaster management. This review paper, in addition to furnishing a comprehensive analysis of the vast expanse and extent of LLMs' utility in diverse domains, recognizes the research gaps and realms where the potential of LLMs is yet to be harnessed. This study uncovers innovative ways in which LLMs can leave a mark in the fields like fitness and wellbeing, urban planning, climate modelling and disaster response which could inspire future researches and applications in the said avenues.
Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. We generally divide multi-step reasoning into two phases: path generation to generate the reasoning path(s); and answer calibration post-processing the reasoning path(s) to obtain a final answer. However, the existing literature lacks systematic analysis on different answer calibration approaches. In this paper, we summarize the taxonomy of recent answer calibration techniques and break them down into step-level and path-level strategies. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Experimental results reveal that integrating the dominance of both strategies tends to derive optimal outcomes. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.
There is a growing need for Large Language Models (LLMs) to effectively use tools and external Application Programming Interfaces (APIs) to plan and complete tasks. As such, there is tremendous interest in methods that can acquire sufficient quantities of train and test data that involve calls to tools / APIs. Two lines of research have emerged as the predominant strategies for addressing this challenge. The first has focused on synthetic data generation techniques, while the second has involved curating task-adjacent datasets which can be transformed into API / Tool-based tasks. In this paper, we focus on the task of identifying, curating, and transforming existing datasets and, in turn, introduce API-BLEND, a large corpora for training and systematic testing of tool-augmented LLMs. The datasets mimic real-world scenarios involving API-tasks such as API / tool detection, slot filling, and sequencing of the detected APIs. We demonstrate the utility of the API-BLEND dataset for both training and benchmarking purposes.
Aspect Sentiment Triple Extraction (ASTE) is an emerging task in fine-grained sentiment analysis. Recent studies have employed Graph Neural Networks (GNN) to model the syntax-semantic relationships inherent in triplet elements. However, they have yet to fully tap into the vast potential of syntactic and semantic information within the ASTE task. In this work, we propose a \emph{Dual Encoder: Exploiting the potential of Syntactic and Semantic} model (D2E2S), which maximizes the syntactic and semantic relationships among words. Specifically, our model utilizes a dual-channel encoder with a BERT channel to capture semantic information, and an enhanced LSTM channel for comprehensive syntactic information capture. Subsequently, we introduce the heterogeneous feature interaction module to capture intricate interactions between dependency syntax and attention semantics, and to dynamically select vital nodes. We leverage the synergy of these modules to harness the significant potential of syntactic and semantic information in ASTE tasks. Testing on public benchmarks, our D2E2S model surpasses the current state-of-the-art(SOTA), demonstrating its effectiveness.
AI alignment in the shape of Reinforcement Learning from Human Feedback (RLHF) is increasingly treated as a crucial ingredient for high performance large language models. \textsc{Proximal Policy Optimization} (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. However, it involves both high computational cost and sensitive hyperparameter tuning. We posit that most of the motivational principles that led to the development of PPO are less of a practical concern in RLHF and advocate for a less computationally expensive method that preserves and even increases performance. We revisit the \textit{formulation} of alignment from human preferences in the context of RL. Keeping simplicity as a guiding principle, we show that many components of PPO are unnecessary in an RLHF context and that far simpler REINFORCE-style optimization variants outperform both PPO and newly proposed "RL-free" methods such as DPO and RAFT. Our work suggests that careful adaptation to LLMs alignment characteristics enables benefiting from online RL optimization at low cost.
We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.