亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Estimating the joint distribution of on-road agents' future trajectories is essential for autonomous driving. In this technical report, we propose a next-generation framework for joint multi-agent trajectory prediction called QCNeXt. First, we adopt the query-centric encoding paradigm for the task of joint multi-agent trajectory prediction. Powered by this encoding scheme, our scene encoder is equipped with permutation equivariance on the set elements, roto-translation invariance in the space dimension, and translation invariance in the time dimension. These invariance properties not only enable accurate multi-agent forecasting fundamentally but also empower the encoder with the capability of streaming processing. Second, we propose a multi-agent DETR-like decoder, which facilitates joint multi-agent trajectory prediction by modeling agents' interactions at future time steps. For the first time, we show that a joint prediction model can outperform marginal prediction models even on the marginal metrics, which opens up new research opportunities in trajectory prediction. Our approach ranks 1st on the Argoverse 2 multi-agent motion forecasting benchmark, winning the championship of the Argoverse Challenge at the CVPR 2023 Workshop on Autonomous Driving.

相關內容

Robust pedestrian trajectory forecasting is crucial to developing safe autonomous vehicles. Although previous works have studied adversarial robustness in the context of trajectory forecasting, some significant issues remain unaddressed. In this work, we try to tackle these crucial problems. Firstly, the previous definitions of robustness in trajectory prediction are ambiguous. We thus provide formal definitions for two kinds of robustness, namely label robustness and pure robustness. Secondly, as previous works fail to consider robustness about all points in a disturbance interval, we utilise a probably approximately correct (PAC) framework for robustness verification. Additionally, this framework can not only identify potential counterexamples, but also provides interpretable analyses of the original methods. Our approach is applied using a prototype tool named TrajPAC. With TrajPAC, we evaluate the robustness of four state-of-the-art trajectory prediction models -- Trajectron++, MemoNet, AgentFormer, and MID -- on trajectories from five scenes of the ETH/UCY dataset and scenes of the Stanford Drone Dataset. Using our framework, we also experimentally study various factors that could influence robustness performance.

In various service-oriented applications such as distributed autonomous delivery, healthcare, tourism, transportation, and many others, where service agents need to perform serial and time-bounded tasks to achieve their goals, quality of service must constantly be assured. In addition to safety requirements, such agents also need to fulfill performance requirements in order to satisfy their quality of service. This paper proposes the novel quality-aware time window temporal logic (QTWTL) by extending the traditional time window temporal logic (TWTL) with two operators for counting and aggregation operations. We also propose offline runtime monitoring algorithms for the performance monitoring of QTWTL specifications. To analyze the feasibility and efficiency of our proposed approach, we generate a large number of traces using the New York City Taxi and Limousine Commission Trip Record data, formalize their performance requirements using QTWTL, and monitor them using the proposed algorithms. The obtained results show that the monitoring algorithm has a linear space and time complexity with respect to the number of traces monitored.

Deep neural network (DNN) deployment has been confined to larger hardware devices due to their expensive computational requirements. This challenge has recently reached another scale with the emergence of large language models (LLMs). In order to reduce both their memory footprint and latency, a promising technique is quantization. It consists in converting floating point representations to low bit-width fixed point representations, usually by assuming a uniform mapping onto a regular grid. This process, referred to in the literature as uniform quantization, may however be ill-suited as most DNN weights and activations follow a bell-shaped distribution. This is even worse on LLMs whose weight distributions are known to exhibit large, high impact, outlier values. In this work, we propose an improvement over the most commonly adopted way to tackle this limitation in deep learning models quantization, namely, non-uniform quantization. NUPES leverages automorphisms to preserve the scalar multiplications. Such transformations are derived from power functions. However, the optimization of the exponent parameter and weight values remains a challenging and novel problem which could not be solved with previous post training optimization techniques which only learn to round up or down weight values in order to preserve the predictive function. We circumvent this limitation with a new paradigm: learning new quantized weights over the entire quantized space. Similarly, we enable the optimization of the power exponent, i.e. the optimization of the quantization operator itself during training by alleviating all the numerical instabilities. The resulting predictive function is compatible with integer-only low-bit inference. We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.

Recent advances in visual-language models have shown remarkable zero-shot text-image matching ability that is transferable to downstream tasks such as object detection and segmentation. Adapting these models for object counting, however, remains a formidable challenge. In this study, we first investigate transferring vision-language models (VLMs) for class-agnostic object counting. Specifically, we propose CLIP-Count, the first end-to-end pipeline that estimates density maps for open-vocabulary objects with text guidance in a zero-shot manner. To align the text embedding with dense visual features, we introduce a patch-text contrastive loss that guides the model to learn informative patch-level visual representations for dense prediction. Moreover, we design a hierarchical patch-text interaction module to propagate semantic information across different resolution levels of visual features. Benefiting from the full exploitation of the rich image-text alignment knowledge of pretrained VLMs, our method effectively generates high-quality density maps for objects-of-interest. Extensive experiments on FSC-147, CARPK, and ShanghaiTech crowd counting datasets demonstrate state-of-the-art accuracy and generalizability of the proposed method. Code is available: //github.com/songrise/CLIP-Count.

In recent years, researchers have proposed a number of automated tools to identify and improve floating-point rounding error in mathematical expressions. However, users struggle to effectively apply these tools. In this paper, we work with novices, experts, and tool developers to investigate user needs during the expression rewriting process. We find that users follow an iterative design process. They want to compare expressions on multiple input ranges, integrate and guide various rewriting tools and understand where errors come from. We organize this investigation's results into a three-stage workflow and implement that workflow in a new, extensible workbench dubbed Odyssey. Odyssey enables users to: (1) diagnose problems in an expression, (2) generate solutions automatically or by hand, and (3) tune their results. Odyssey tracks a working set of expressions and turns a state-of-the-art automated tool "inside out," giving the user access to internal heuristics, algorithms, and functionality. In a user study, Odyssey enabled five expert numerical analysts to solve challenging rewriting problems where state-of-the-art automated tools fail. In particular, the experts unanimously praised Odyssey's novel support for interactive range modification and local error visualization.

The aim of this study is to evaluate the performance of AI-assisted programming in actual mobile development teams that are focused on native mobile languages like Kotlin and Swift. The extensive case study involves 16 participants and 2 technical reviewers, from a software development department designed to understand the impact of using LLMs trained for code generation in specific phases of the team, more specifically, technical onboarding and technical stack switch. The study uses technical problems dedicated to each phase and requests solutions from the participants with and without using AI-Code generators. It measures time, correctness, and technical integration using ReviewerScore, a metric specific to the paper and extracted from actual industry standards, the code reviewers of merge requests. The output is converted and analyzed together with feedback from the participants in an attempt to determine if using AI-assisted programming tools will have an impact on getting developers onboard in a project or helping them with a smooth transition between the two native development environments of mobile development, Android and iOS. The study was performed between May and June 2023 with members of the mobile department of a software development company based in Cluj-Napoca, with Romanian ownership and management.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

We propose a knowledge-enhanced approach, ERNIE-ViL, to learn joint representations of vision and language. ERNIE-ViL tries to construct the detailed semantic connections (objects, attributes of objects and relationships between objects in visual scenes) across vision and language, which are essential to vision-language cross-modal tasks. Incorporating knowledge from scene graphs, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction in the pre-training phase. More specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can model the joint representation characterizing the alignments of the detailed semantics across vision and language. Pre-trained on two large image-text alignment datasets (Conceptual Captions and SBU), ERNIE-ViL learns better and more robust joint representations. It achieves state-of-the-art performance on 5 vision-language downstream tasks after fine-tuning ERNIE-ViL. Furthermore, it ranked the 1st place on the VCR leader-board with an absolute improvement of 3.7%.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司