亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Weisfeiler-Leman (WL) dimension is an established measure for the inherent descriptive complexity of graphs and relational structures. It corresponds to the number of variables that are needed and sufficient to define the object of interest in a counting version of first-order logic (FO). These bounded-variable counting logics were even candidates to capture graph isomorphism, until a celebrated construction due to Cai, F\"urer, and Immerman [Combinatorica 1992] showed that $\Omega(n)$ variables are required to distinguish all non-isomorphic $n$-vertex graphs. Still, very little is known about the precise number of variables required and sufficient to define every $n$-vertex graph. For the bounded-variable (non-counting) FO fragments, Pikhurko, Veith, and Verbitsky [Discret. Appl. Math. 2006] provided an upper bound of $\frac{n+3}{2}$ and showed that it is essentially tight. Our main result yields that, in the presence of counting quantifiers, $\frac{n}{4} + o(n)$ variables suffice. This shows that counting does allow us to save variables when defining graphs. As an application of our techniques, we also show new bounds in terms of the vertex cover number of the graph. To obtain the results, we introduce a new concept called the WL depth of a graph. We use it to analyze branching trees within the Individualization/Refinement (I/R) paradigm from the domain of isomorphism algorithms. We extend the recursive procedure from the I/R paradigm by the possibility of splitting the graphs into independent parts. Then we bound the depth of the obtained branching trees, which translates into bounds on the WL dimension and thereby on the number of variables that suffice to define the graphs.

相關內容

Dynamic multi-relational graphs are an expressive relational representation for data enclosing entities and relations of different types, and where relationships are allowed to vary in time. Addressing predictive tasks over such data requires the ability to find structure embeddings that capture the diversity of the relationships involved, as well as their dynamic evolution. In this work, we establish a novel class of challenging tasks for dynamic multi-relational graphs involving out-of-domain link prediction, where the relationship being predicted is not available in the input graph. We then introduce a novel Graph Neural Network model, named GOOD, designed specifically to tackle the out-of-domain generalization problem. GOOD introduces a novel design concept for multi-relation embedding aggregation, based on the idea that good representations are such when it is possible to disentangle the mixing proportions of the different relational embeddings that have produced it. We also propose five benchmarks based on two retail domains, where we show that GOOD can effectively generalize predictions out of known relationship types and achieve state-of-the-art results. Most importantly, we provide insights into problems where out-of-domain prediction might be preferred to an in-domain formulation, that is, where the relationship to be predicted has very few positive examples.

The time-dependent Gross-Pitaevksii equation (GPE) is a nonlinear Schr\"odinger equation which is used in quantum physics to model the dynamics of Bose-Einstein condensates. In this work we consider numerical approximations of the GPE based on a multiscale approach known as the localized orthogonal decomposition. Combined with an energy preserving time integrator one derives a method which is of high order in space and time under mild regularity assumptions. In previous work, the method has been shown to be numerically very efficient compared to first order Lagrange FEM. In this paper, we further investigate the performance of the method and compare it with higher order Lagrange FEM. For rough problems we observe that the novel method performs very efficient and retains its high order, while the classical methods can only compete well for smooth problems.

We consider a new type of inverse combinatorial optimization, Inverse Submodular Maximization (ISM), for human-in-the-loop multi-robot coordination. Forward combinatorial optimization, defined as the process of solving a combinatorial problem given the reward (cost)-related parameters, is widely used in multi-robot coordination. In the standard pipeline, the reward (cost)-related parameters are designed offline by domain experts first and then these parameters are utilized for coordinating robots online. What if we need to change these parameters by non-expert human supervisors who watch over the robots during tasks to adapt to some new requirements? We are interested in the case where human supervisors can suggest what actions to take, and the robots need to change the internal parameters based on such suggestions. We study such problems from the perspective of inverse combinatorial optimization, i.e., the process of finding parameters given solutions to the problem. Specifically, we propose a new formulation for ISM, in which we aim to find a new set of parameters that minimally deviate from the current parameters and can make the greedy algorithm output actions the same as those suggested by humans. We show that such problems can be formulated as a Mixed Integer Quadratic Program (MIQP). However, MIQP involves exponentially many binary variables, making it intractable for the existing solver when the problem size is large. We propose a new algorithm under the Branch $\&$ Bound paradigm to solve such problems. In numerical simulations, we demonstrate how to use ISM in multi-robot multi-objective coverage control, and we show that the proposed algorithm achieves significant advantages in running time and peak memory usage compared to directly using an existing solver.

Optimal behaviours of a system to perform a specific task can be achieved by leveraging the coupling between trajectory optimization, stabilization, and design optimization. This approach is particularly advantageous for underactuated systems, which are systems that have fewer actuators than degrees of freedom and thus require for more elaborate control systems. This paper proposes a novel co-design algorithm, namely Robust Trajectory Control with Design optimization (RTC-D). An inner optimization layer (RTC) simultaneously performs direct transcription (DIRTRAN) to find a nominal trajectory while computing optimal hyperparameters for a stabilizing time-varying linear quadratic regulator (TVLQR). RTC-D augments RTC with a design optimization layer, maximizing the system's robustness through a time-varying Lyapunov-based region of attraction (ROA) analysis. This analysis provides a formal guarantee of stability for a set of off-nominal states. The proposed algorithm has been tested on two different underactuated systems: the torque-limited simple pendulum and the cart-pole. Extensive simulations of off-nominal initial conditions demonstrate improved robustness, while real-system experiments show increased insensitivity to torque disturbances.

Energy-Based Models (EBMs) are an important class of probabilistic models, also known as random fields and undirected graphical models. EBMs are un-normalized and thus radically different from other popular self-normalized probabilistic models such as hidden Markov models (HMMs), autoregressive models, generative adversarial nets (GANs) and variational auto-encoders (VAEs). Over the past years, EBMs have attracted increasing interest not only from the core machine learning community, but also from application domains such as speech, vision, natural language processing (NLP) and so on, due to significant theoretical and algorithmic progress. The sequential nature of speech and language also presents special challenges and needs a different treatment from processing fix-dimensional data (e.g., images). Therefore, the purpose of this monograph is to present a systematic introduction to energy-based models, including both algorithmic progress and applications in speech and language processing. First, the basics of EBMs are introduced, including classic models, recent models parameterized by neural networks, sampling methods, and various learning methods from the classic learning algorithms to the most advanced ones. Then, the application of EBMs in three different scenarios is presented, i.e., for modeling marginal, conditional and joint distributions, respectively. 1) EBMs for sequential data with applications in language modeling, where the main focus is on the marginal distribution of a sequence itself; 2) EBMs for modeling conditional distributions of target sequences given observation sequences, with applications in speech recognition, sequence labeling and text generation; 3) EBMs for modeling joint distributions of both sequences of observations and targets, and their applications in semi-supervised learning and calibrated natural language understanding.

Traditional analysis of highly distorted micro-X-ray diffraction ({\mu}-XRD) patterns from hydrothermal fluid environments is a time-consuming process, often requiring substantial data preprocessing and labeled experimental data. This study demonstrates the potential of deep learning with a multitask learning (MTL) architecture to overcome these limitations. We trained MTL models to identify phase information in {\mu}-XRD patterns, minimizing the need for labeled experimental data and masking preprocessing steps. Notably, MTL models showed superior accuracy compared to binary classification CNNs. Additionally, introducing a tailored cross-entropy loss function improved MTL model performance. Most significantly, MTL models tuned to analyze raw and unmasked XRD patterns achieved close performance to models analyzing preprocessed data, with minimal accuracy differences. This work indicates that advanced deep learning architectures like MTL can automate arduous data handling tasks, streamline the analysis of distorted XRD patterns, and reduce the reliance on labor-intensive experimental datasets.

This work concerns the minimization of the pseudospectral abscissa of a matrix-valued function dependent on parameters analytically. The problem is motivated by robust stability and transient behavior considerations for a linear control system that has optimization parameters. We describe a subspace procedure to cope with the setting when the matrix-valued function is of large size. The proposed subspace procedure solves a sequence of reduced problems obtained by restricting the matrix-valued function to small subspaces, whose dimensions increase gradually. It possesses desirable features such as the global convergence of the minimal values of the reduced problems to the minimal value of the original problem, and a superlinear convergence exhibited by the decay in the errors of the minimizers of the reduced problems. In mathematical terms, the problem we consider is a large-scale nonconvex minimax eigenvalue optimization problem such that the eigenvalue function appears in the constraint of the inner maximization problem. Devising and analyzing a subspace framework for the minimax eigenvalue optimization problem at hand with the eigenvalue function in the constraint require special treatment that makes use of a Lagrangian and dual variables. There are notable advantages in minimizing the pseudospectral abscissa over maximizing the distance to instability or minimizing the $\mathcal{H}_\infty$ norm; the optimized pseudospectral abscissa provides quantitative information about the worst-case transient growth, and the initial guesses for the parameter values to optimize the pseudospectral abscissa can be arbitrary, unlike the case to optimize the distance to instability and $\mathcal{H}_\infty$ norm that would normally require initial guesses yielding asymptotically stable systems.

Most diffusion models assume that the reverse process adheres to a Gaussian distribution. However, this approximation has not been rigorously validated, especially at singularities, where t=0 and t=1. Improperly dealing with such singularities leads to an average brightness issue in applications, and limits the generation of images with extreme brightness or darkness. We primarily focus on tackling singularities from both theoretical and practical perspectives. Initially, we establish the error bounds for the reverse process approximation, and showcase its Gaussian characteristics at singularity time steps. Based on this theoretical insight, we confirm the singularity at t=1 is conditionally removable while it at t=0 is an inherent property. Upon these significant conclusions, we propose a novel plug-and-play method SingDiffusion to address the initial singular time step sampling, which not only effectively resolves the average brightness issue for a wide range of diffusion models without extra training efforts, but also enhances their generation capability in achieving notable lower FID scores. Code and models are released at //github.com/PangzeCheung/SingDiffusion.

Finding an approximate second-order stationary point (SOSP) is a well-studied and fundamental problem in stochastic nonconvex optimization with many applications in machine learning. However, this problem is poorly understood in the presence of outliers, limiting the use of existing nonconvex algorithms in adversarial settings. In this paper, we study the problem of finding SOSPs in the strong contamination model, where a constant fraction of datapoints are arbitrarily corrupted. We introduce a general framework for efficiently finding an approximate SOSP with \emph{dimension-independent} accuracy guarantees, using $\widetilde{O}({D^2}/{\epsilon})$ samples where $D$ is the ambient dimension and $\epsilon$ is the fraction of corrupted datapoints. As a concrete application of our framework, we apply it to the problem of low rank matrix sensing, developing efficient and provably robust algorithms that can tolerate corruptions in both the sensing matrices and the measurements. In addition, we establish a Statistical Query lower bound providing evidence that the quadratic dependence on $D$ in the sample complexity is necessary for computationally efficient algorithms.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司