We introduce a numerical approach to computing the Schr\"odinger map (SM) based on the Hasimoto transform which relates the SM flow to a cubic nonlinear Schr\"odinger (NLS) equation. In exploiting this nonlinear transform we are able to introduce the first fully explicit unconditionally stable symmetric integrators for the SM equation. Our approach consists of two parts: an integration of the NLS equation followed by the numerical evaluation of the Hasimoto transform. Motivated by the desire to study rough solutions to the SM equation, we also introduce a new symmetric low-regularity integrator for the NLS equation. This is combined with our novel fast low-regularity Hasimoto (FLowRH) transform, based on a tailored analysis of the resonance structures in the Magnus expansion and a fast realisation based on block-Toeplitz partitions, to yield an efficient low-regularity integrator for the SM equation. This scheme in particular allows us to obtain approximations to the SM in a more general regime (i.e. under lower regularity assumptions) than previously proposed methods. The favorable properties of our methods are exhibited both in theoretical convergence analysis and in numerical experiments.
One of the main issues in computing a tensor decomposition is how to choose the number of rank-one components, since there is no finite algorithms for determining the rank of a tensor. A commonly used approach for this purpose is to find a low-dimensional subspace by solving an optimization problem and assuming the number of components is fixed. However, even though this algorithm is efficient and easy to implement, it often converges to poor local minima and suffers from outliers and noise. The aim of this paper is to develop a mathematical framework for exact tensor decomposition that is able to represent a tensor as the sum of a finite number of low-rank tensors. In the paper three different problems will be carried out to derive: i) the decomposition of a non-negative self-adjoint tensor operator; ii) the decomposition of a linear tensor transformation; iii) the decomposition of a generic tensor.
Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.
We consider the performance of Glauber dynamics for the random cluster model with real parameter $q>1$ and temperature $\beta>0$. Recent work by Helmuth, Jenssen and Perkins detailed the ordered/disordered transition of the model on random $\Delta$-regular graphs for all sufficiently large $q$ and obtained an efficient sampling algorithm for all temperatures $\beta$ using cluster expansion methods. Despite this major progress, the performance of natural Markov chains, including Glauber dynamics, is not yet well understood on the random regular graph, partly because of the non-local nature of the model (especially at low temperatures) and partly because of severe bottleneck phenomena that emerge in a window around the ordered/disordered transition. Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from worst-case starting configurations can be avoided by initialising the chain more judiciously. Our main result establishes this conjecture for all sufficiently large $q$ (with respect to $\Delta$). Specifically, we consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures $\beta$, including in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and Sinclair for the Ising model who obtained a similar-flavoured mixing-time bound on the random regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered transition and show spatial mixing properties "within the phase", which are then related to the evolution of the chain.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
$ $Deriving a robot's equation of motion typically requires placing multiple coordinate frames, commonly using the Denavit-Hartenberg convention to express the kinematic and dynamic relationships between segments. This paper presents an alternative using the differential geometric method of Exponential Maps, which reduces the number of coordinate frame choices to two. The traditional and differential geometric methods are compared, and the conceptual and practical differences are detailed. The open-source software, Exp[licit], based on the differential geometric method, is introduced. It is intended for use by researchers and engineers with basic knowledge of geometry and robotics. Code snippets and an example application are provided to demonstrate the benefits of the differential geometric method and assist users to get started with the software.
High-order structures have been recognised as suitable models for systems going beyond the binary relationships for which graph models are appropriate. Despite their importance and surge in research on these structures, their random cases have been only recently become subjects of interest. One of these high-order structures is the oriented hypergraph, which relates couples of subsets of an arbitrary number of vertices. Here we develop the Erd\H{o}s-R\'enyi model for oriented hypergraphs, which corresponds to the random realisation of oriented hyperedges of the complete oriented hypergraph. A particular feature of random oriented hypergraphs is that the ratio between their expected number of oriented hyperedges and their expected degree or size is 3/2 for large number of vertices. We highlight the suitability of oriented hypergraphs for modelling large collections of chemical reactions and the importance of random oriented hypergraphs to analyse the unfolding of chemistry.
The success of deep learning in speaker recognition relies heavily on the use of large datasets. However, the data-hungry nature of deep learning methods has already being questioned on account the ethical, privacy, and legal concerns that arise when using large-scale datasets of natural speech collected from real human speakers. For example, the widely-used VoxCeleb2 dataset for speaker recognition is no longer accessible from the official website. To mitigate these concerns, this work presents an initiative to generate a privacy-friendly synthetic VoxCeleb2 dataset that ensures the quality of the generated speech in terms of privacy, utility, and fairness. We also discuss the challenges of using synthetic data for the downstream task of speaker verification.
The efficacy of numerical methods like integral estimates via Gaussian quadrature formulas depends on the localization of the zeros of the associated family of orthogonal polynomials. In this regard, following the renewed interest in quadrature formulas on the unit circle, and $R_{II}$-type polynomials, which include the complementary Romanovski-Routh polynomials, in this work we present a collection of properties of their zeros. Our results include extreme bounds, convexity, and density, alongside the connection of such polynomials to classical orthogonal polynomials via asymptotic formulas.
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.