Large Language Models (LLMs) are smart but forgetful. Recent studies, (e.g., (Bubeck et al., 2023)) on modern LLMs have shown that they are capable of performing amazing tasks typically necessitating human-level intelligence. However, unlike humans, frozen LLMs do not improve over time; they neither acquire new knowledge nor learn from their successes or failures. Some approaches to improving the intelligence of LLMs include fine-tuning models based on problem-solving performance (Zelikman et al., 2022), and building bigger and more sophisticated models (Bubeck et al., 2023). However, these methods have the drawback of requiring substantial data and computational resources to retrain existing models. In this paper, we explore the use of Retrieval Augmented Generation, also known as RAG (Lewis et al., 2021) to improve problem-solving performance. We propose ARM-RAG (Auxiliary Rationale Memory for Retrieval Augmented Generation), a system that learns from its successes without incurring high training costs. We demonstrate that the storage and subsequent retrieval of reasoning chains have a positive influence on performance in grade-school math problems.
We proposed a new objective intelligibility measure (OIM), called the Gammachirp Envelope Similarity Index (GESI), which can predict the speech intelligibility (SI) of simulated hearing loss (HL) sounds for normal hearing (NH) listeners. GESI is an intrusive method that computes the SI metric using the gammachirp filterbank (GCFB), the modulation filterbank, and the extended cosine similarity measure. The unique features of GESI are i) to reflect the hearing impaired (HI) listener's HL that appears in the audiogram and is caused by active and passive cochlear dysfunction, ii) to provide a single goodness metric, as in the widely used STOI and ESTOI, that can be used immediately to evaluate SE algorithms, and iii) to provide a simple control parameter to accept the level asymmetry of the reference and test sounds and to deal with individual listening conditions and environments. For evaluation, we conducted four SI experiments on words of male and female speech sounds in both laboratory and remote environments. We then evaluated GESI and the conventional OIMs, STOI, ESTOI, MBSTOI, and HASPI versions 1 and 2, in three test schemes for their ability to predict mean and individual SI values with and without the use of simulated HL sounds. GESI was shown to outperform the other OIMs in the evaluations. GESI could be used to improve SE algorithms in assistive listening devices for individual HI listeners.
Panoramic imaging research on geometry recovery and High Dynamic Range (HDR) reconstruction becomes a trend with the development of Extended Reality (XR). Neural Radiance Fields (NeRF) provide a promising scene representation for both tasks without requiring extensive prior data. However, in the case of inputting sparse Low Dynamic Range (LDR) panoramic images, NeRF often degrades with under-constrained geometry and is unable to reconstruct HDR radiance from LDR inputs. We observe that the radiance from each pixel in panoramic images can be modeled as both a signal to convey scene lighting information and a light source to illuminate other pixels. Hence, we propose the irradiance fields from sparse LDR panoramic images, which increases the observation counts for faithful geometry recovery and leverages the irradiance-radiance attenuation for HDR reconstruction. Extensive experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction and validate their effectiveness. Furthermore, we show a promising byproduct of spatially-varying lighting estimation. The code is available at //github.com/Lu-Zhan/Pano-NeRF.
Large Language Models (LLMs) have demonstrated impressive potential to simulate human behavior. Using a causal inference framework, we empirically and theoretically analyze the challenges of conducting LLM-simulated experiments, and explore potential solutions. In the context of demand estimation, we show that variations in the treatment included in the prompt (e.g., price of focal product) can cause variations in unspecified confounding factors (e.g., price of competitors, historical prices, outside temperature), introducing endogeneity and yielding implausibly flat demand curves. We propose a theoretical framework suggesting this endogeneity issue generalizes to other contexts and won't be fully resolved by merely improving the training data. Unlike real experiments where researchers assign pre-existing units across conditions, LLMs simulate units based on the entire prompt, which includes the description of the treatment. Therefore, due to associations in the training data, the characteristics of individuals and environments simulated by the LLM can be affected by the treatment assignment. We explore two potential solutions. The first specifies all contextual variables that affect both treatment and outcome, which we demonstrate to be challenging for a general-purpose LLM. The second explicitly specifies the source of treatment variation in the prompt given to the LLM (e.g., by informing the LLM that the store is running an experiment). While this approach only allows the estimation of a conditional average treatment effect that depends on the specific experimental design, it provides valuable directional results for exploratory analysis.
This paper proposes an end-to-end framework for generating 3D human pose datasets using Neural Radiance Fields (NeRF). Public datasets generally have limited diversity in terms of human poses and camera viewpoints, largely due to the resource-intensive nature of collecting 3D human pose data. As a result, pose estimators trained on public datasets significantly underperform when applied to unseen out-of-distribution samples. Previous works proposed augmenting public datasets by generating 2D-3D pose pairs or rendering a large amount of random data. Such approaches either overlook image rendering or result in suboptimal datasets for pre-trained models. Here we propose PoseGen, which learns to generate a dataset (human 3D poses and images) with a feedback loss from a given pre-trained pose estimator. In contrast to prior art, our generated data is optimized to improve the robustness of the pre-trained model. The objective of PoseGen is to learn a distribution of data that maximizes the prediction error of a given pre-trained model. As the learned data distribution contains OOD samples of the pre-trained model, sampling data from such a distribution for further fine-tuning a pre-trained model improves the generalizability of the model. This is the first work that proposes NeRFs for 3D human data generation. NeRFs are data-driven and do not require 3D scans of humans. Therefore, using NeRF for data generation is a new direction for convenient user-specific data generation. Our extensive experiments show that the proposed PoseGen improves two baseline models (SPIN and HybrIK) on four datasets with an average 6% relative improvement.
Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI). We contribute a comprehensive research agenda that lays out future directions of Generative AI spanning three levels: aligning with human values; assimilating human intents; and augmenting human abilities. By identifying these next-steps, we intend to draw interdisciplinary research teams to pursue a coherent set of emergent ideas in HGAI, focusing on their interested topics while maintaining a coherent big picture of the future work landscape.
Foundation models like the Segment Anything Model (SAM) have demonstrated promise in generic object segmentation. However, directly applying SAM to surgical instrument segmentation presents key challenges. First, SAM relies on per-frame point-or-box prompts which complicate surgeon-computer interaction. Also, SAM yields suboptimal performance on segmenting surgical instruments, owing to insufficient surgical data in its pre-training as well as the complex structure and fine-grained details of various surgical instruments. To address these challenges, in this paper, we investigate text promptable surgical instrument segmentation and propose SP-SAM (SurgicalPart-SAM), a novel efficient-tuning approach that integrates surgical instrument structure knowledge with the generic segmentation knowledge of SAM. Specifically, we achieve this by proposing (1) collaborative prompts in the text form "[part name] of [instrument category name]" that decompose instruments into fine-grained parts; (2) a Cross-Modal Prompt Encoder that encodes text prompts jointly with visual embeddings into discriminative part-level representations; and (3) a Part-to-Whole Selective Fusion and a Hierarchical Decoding strategy that selectively assemble the part-level representations into a whole for accurate instrument segmentation. Built upon them, SP-SAM acquires a better capability to comprehend surgical instrument structures and distinguish between various categories. Extensive experiments on both the EndoVis2018 and EndoVis2017 datasets demonstrate SP-SAM's state-of-the-art performance with minimal tunable parameters. Code is at //github.com/wenxi-yue/SurgicalPart-SAM.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.