Livestream shopping is getting more and more popular as a new shopping form. Also, due to the COVID-19 pandemic, people have shifted to online shopping platforms. However, the broader user adoption comes with a cost -- many streamers' malicious selling incidents have recently been reported. In this study, we aim to explore streamers' malicious selling strategies and how viewers may perceive these strategies. First, we collected 40 livestream shopping sessions from two popular livestream platforms in China -- Taobao and Douyin (TikTok of Chinese version). We identified three categories of malicious selling strategies (i.e., Compulsive, Restrictive, and Designing) and found platform designs mostly enhanced these malicious selling strategies. Second, through an interview study with 13 end users, we provide a rich description of users' awareness of malicious selling strategies and challenges to counter malicious selling. We conclude the paper by discussing the policy and design implications to counter malicious selling.
To promote engagement, recommendation algorithms on platforms like YouTube increasingly personalize users' feeds, limiting users' exposure to diverse content and depriving them of opportunities to reflect on their interests compared to others'. In this work, we investigate how exchanging recommendations with strangers can help users discover new content and reflect. We tested this idea by developing OtherTube -- a browser extension for YouTube that displays strangers' personalized YouTube recommendations. OtherTube allows users to (i) create an anonymized profile for social comparison, (ii) share their recommended videos with others, and (iii) browse strangers' YouTube recommendations. We conducted a 10-day-long user study (n=41) followed by a post-study interview (n=11). Our results reveal that users discovered and developed new interests from seeing OtherTube recommendations. We identified user and content characteristics that affect interaction and engagement with exchanged recommendations; for example, younger users interacted more with OtherTube, while the perceived irrelevance of some content discouraged users from watching certain videos. Users reflected on their interests as well as others', recognizing similarities and differences. Our work shows promise for designs leveraging the exchange of personalized recommendations with strangers.
As machine learning (ML) is deployed by many competing service providers, the underlying ML predictors also compete against each other, and it is increasingly important to understand the impacts and biases from such competition. In this paper, we study what happens when the competing predictors can acquire additional labeled data to improve their prediction quality. We introduce a new environment that allows ML predictors to use active learning algorithms to purchase labeled data within their budgets while competing against each other to attract users. Our environment models a critical aspect of data acquisition in competing systems which has not been well-studied before. We found that the overall performance of an ML predictor improves when predictors can purchase additional labeled data. Surprisingly, however, the quality that users experience -- i.e. the accuracy of the predictor selected by each user -- can decrease even as the individual predictors get better. We show that this phenomenon naturally arises due to a trade-off whereby competition pushes each predictor to specialize in a subset of the population while data purchase has the effect of making predictors more uniform. We support our findings with both experiments and theories.
The COVID-19 pandemic has placed a severe mental strain on people in general, and on young people in particular. Online support forums offer opportunities for peer-to-peer health support, which can ease pressure on professional and established volunteer services when demand is high. Such forums can also be used to monitor at-risk communities to identify concerns and causes of psychological stress. We created and monitored r/COVID19_support, an online forum for people seeking support during the COVID-19 pandemic, on the platform Reddit. We identify posts made by users self-identifying as students or posting about college/university life, then coded these posts to identify emerging themes that related to triggers of psychological anxiety and distress. 147 posts were made to the forum by 111 unique users during the study period. A number of themes were identified by manual coding, included: feelings of grief associated with the loss of college-related life experiences, such as graduation ceremonies or proms; difficulties with focussing on online and self-guided learning; and fears for the future, in particular of graduating into a constrained job market. The identification of specific issues enabled users to be signposted to information to help them cope with address those particular concerns. Monitoring peer-to-peer forums can help to identify specific issues with which vulnerable groups may require additional support, enabling users to be signposted on to high-quality information to address specific issues.
Introducing new technologies such as messaging platforms, and the chatbots attached to them, in higher education, is rapidly growing. This introduction entails a careful consideration of the potential opportunities and/or challenges of adopting these tools. Hence, a thorough examination of the teachers' experiences in this discipline can shed light on the effective ways of enhancing students' learning and boosting their progress. In this contribution, we have surveyed the opinions of tertiary education teachers based in Spain (mainly) and Spanish-speaking countries. The focus of these surveys is to collect teachers' feedback about their opinions regarding the introduction of the messaging platforms and chatbots in their classes, understand their needs and to gather information about the various educational use cases where these tools are valuable. In addition, an analysis of how and when teachers' opinions towards the use of these tools can vary across gender, experience, and their discipline of specialisation is presented. The key findings of this study highlight the factors that can contribute to the advancement of the adoption of messaging platforms and chatbots in higher education institutions to achieve the desired learning outcomes.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and reconfiguration. We review noteworthy past research findings, outline the similarities and differences between early ('00-'10) and modern ('11-'18) streaming systems, and discuss recent trends and open problems.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.
Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.
Transfer learning has attracted a large amount of interest and research in last decades, and some efforts have been made to build more precise recommendation systems. Most previous transfer recommendation systems assume that the target domain shares the same/similar rating patterns with the auxiliary source domain, which is used to improve the recommendation performance. However, to the best of our knowledge, almost these works do not consider the characteristics of sequential data. In this paper, we study the new cross-domain recommendation scenario for mining novelty-seeking trait. Recent studies in psychology suggest that novelty-seeking trait is highly related to consumer behavior, which has a profound business impact on online recommendation. Previous work performing on only one single target domain may not fully characterize users' novelty-seeking trait well due to the data scarcity and sparsity, leading to the poor recommendation performance. Along this line, we proposed a new cross-domain novelty-seeking trait mining model (CDNST for short) to improve the sequential recommendation performance by transferring the knowledge from auxiliary source domain. We conduct systematic experiments on three domain data sets crawled from Douban (www.douban.com) to demonstrate the effectiveness of the proposed model. Moreover, we analyze how the temporal property of sequential data affects the performance of CDNST, and conduct simulation experiments to validate our analysis.