With advancements in AI-generated images coming on a continuous basis, it is increasingly difficult to distinguish traditionally-sourced images (e.g., photos, artwork) from AI-generated ones. Previous detection methods study the generalization from a single generator to another in isolation. However, in reality, new generators are released on a streaming basis. We study generalization in this setting, training on N models and testing on the next (N+k), following the historical release dates of well-known generation methods. Furthermore, images increasingly consist of both real and generated components, for example through image inpainting. Thus, we extend this approach to pixel prediction, demonstrating strong performance using automatically-generated inpainted data. In addition, for settings where commercial models are not publicly available for automatic data generation, we evaluate if pixel detectors can be trained solely on whole synthetic images.
We present a comprehensive Bayesian approach to paleodemography, emphasizing the proper handling of uncertainties. We then apply that framework to survey data from Cyprus, and quantify the uncertainties in the paleodemographic estimates to demonstrate the applicability of the Bayesian approach and to show the large uncertainties present in current paleodemographic models and data. We also discuss methods to reduce the uncertainties and improve the efficacy of paleodemographic models.
While several long-form VideoQA datasets have been introduced, the length of both videos used to curate questions and sub-clips of clues leveraged to answer those questions have not yet reached the criteria for genuine long-form video understanding. Moreover, their QAs are unduly narrow and modality-biased, lacking a wider view of understanding long-term video content with rich dynamics and complex narratives. To remedy this, we introduce MoVQA, a long-form movie question-answering dataset, and benchmark to assess the diverse cognitive capabilities of multimodal systems rely on multi-level temporal lengths, with considering both video length and clue length. Additionally, to take a step towards human-level understanding in long-form video, versatile and multimodal question-answering is designed from the moviegoer-perspective to assess the model capabilities on various perceptual and cognitive axes.Through analysis involving various baselines reveals a consistent trend: the performance of all methods significantly deteriorate with increasing video and clue length. Meanwhile, our established baseline method has shown some improvements, but there is still ample scope for enhancement on our challenging MoVQA dataset. We expect our MoVQA to provide a new perspective and encourage inspiring works on long-form video understanding research.
While image understanding on recognition-level has achieved remarkable advancements, reliable visual scene understanding requires comprehensive image understanding on recognition-level but also cognition-level, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge. In this paper, we propose a novel Cognitive Attention Network (CAN) for visual commonsense reasoning to achieve interpretable visual understanding. Specifically, we first introduce an image-text fusion module to fuse information from images and text collectively. Second, a novel inference module is designed to encode commonsense among image, query and response. Extensive experiments on large-scale Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate the effectiveness of our approach. The implementation is publicly available at //github.com/tanjatang/CAN
Fine-tuning a pre-trained model (such as BERT, ALBERT, RoBERTa, T5, GPT, etc.) has proven to be one of the most promising paradigms in recent NLP research. However, numerous recent works indicate that fine-tuning suffers from the instability problem, i.e., tuning the same model under the same setting results in significantly different performance. Many recent works have proposed different methods to solve this problem, but there is no theoretical understanding of why and how these methods work. In this paper, we propose a novel theoretical stability analysis of fine-tuning that focuses on two commonly used settings, namely, full fine-tuning and head tuning. We define the stability under each setting and prove the corresponding stability bounds. The theoretical bounds explain why and how several existing methods can stabilize the fine-tuning procedure. In addition to being able to explain most of the observed empirical discoveries, our proposed theoretical analysis framework can also help in the design of effective and provable methods. Based on our theory, we propose three novel strategies to stabilize the fine-tuning procedure, namely, Maximal Margin Regularizer (MMR), Multi-Head Loss (MHLoss), and Self Unsupervised Re-Training (SURT). We extensively evaluate our proposed approaches on 11 widely used real-world benchmark datasets, as well as hundreds of synthetic classification datasets. The experiment results show that our proposed methods significantly stabilize the fine-tuning procedure and also corroborate our theoretical analysis.
We introduce a pipeline to address anatomical inaccuracies in Stable Diffusion generated hand images. The initial step involves constructing a specialized dataset, focusing on hand anomalies, to train our models effectively. A finetuned detection model is pivotal for precise identification of these anomalies, ensuring targeted correction. Body pose estimation aids in understanding hand orientation and positioning, crucial for accurate anomaly correction. The integration of ControlNet and InstructPix2Pix facilitates sophisticated inpainting and pixel-level transformation, respectively. This dual approach allows for high-fidelity image adjustments. This comprehensive approach ensures the generation of images with anatomically accurate hands, closely resembling real-world appearances. Our experimental results demonstrate the pipeline's efficacy in enhancing hand image realism in Stable Diffusion outputs. We provide an online demo at //fixhand.yiqun.io
As language models (LMs) advance, interest is growing in applying them to high-stakes societal decisions, such as determining financing or housing eligibility. However, their potential for discrimination in such contexts raises ethical concerns, motivating the need for better methods to evaluate these risks. We present a method for proactively evaluating the potential discriminatory impact of LMs in a wide range of use cases, including hypothetical use cases where they have not yet been deployed. Specifically, we use an LM to generate a wide array of potential prompts that decision-makers may input into an LM, spanning 70 diverse decision scenarios across society, and systematically vary the demographic information in each prompt. Applying this methodology reveals patterns of both positive and negative discrimination in the Claude 2.0 model in select settings when no interventions are applied. While we do not endorse or permit the use of language models to make automated decisions for the high-risk use cases we study, we demonstrate techniques to significantly decrease both positive and negative discrimination through careful prompt engineering, providing pathways toward safer deployment in use cases where they may be appropriate. Our work enables developers and policymakers to anticipate, measure, and address discrimination as language model capabilities and applications continue to expand. We release our dataset and prompts at //huggingface.co/datasets/Anthropic/discrim-eval
The Image Captioning (IC) technique is widely used to describe images in natural language. Recently, some IC system testing methods have been proposed. However, these methods still rely on pre-annotated information and hence cannot really alleviate the oracle problem in testing. Besides, their method artificially manipulates objects, which may generate unreal images as test cases and thus lead to less meaningful testing results. Thirdly, existing methods have various requirements on the eligibility of source test cases, and hence cannot fully utilize the given images to perform testing. To tackle these issues, in this paper, we propose REIC to perform metamorphic testing for IC systems with some image-level reduction transformations like image cropping and stretching. Instead of relying on the pre-annotated information, REIC uses a localization method to align objects in the caption with corresponding objects in the image, and checks whether each object is correctly described or deleted in the caption after transformation. With the image-level reduction transformations, REIC does not artificially manipulate any objects and hence can avoid generating unreal follow-up images. Besides, it eliminates the requirement on the eligibility of source test cases in the metamorphic transformation process, as well as decreases the ambiguity and boosts the diversity among the follow-up test cases, which consequently enables testing to be performed on any test image and reveals more distinct valid violations. We employ REIC to test five popular IC systems. The results demonstrate that REIC can sufficiently leverage the provided test images to generate follow-up cases of good reality, and effectively detect a great number of distinct violations, without the need for any pre-annotated information.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.