We consider a biochemical model that consists of a system of partial differential equations based on reaction terms and subject to non--homogeneous Dirichlet boundary conditions. The model is discretised using the gradient discretisation method (GDM) which is a framework covering a large class of conforming and non conforming schemes. Under classical regularity assumptions on the exact solutions, the GDM enables us to establish the existence of the model solutions in a weak sense, and strong convergence for the approximate solution and its approximate gradient. Numerical test employing a finite volume method is presented to demonstrate the behaviour of the solutions to the model.
In black-box function optimization, we need to consider not only controllable design variables but also uncontrollable stochastic environment variables. In such cases, it is necessary to solve the optimization problem by taking into account the uncertainty of the environmental variables. Chance-constrained (CC) problem, the problem of maximizing the expected value under a certain level of constraint satisfaction probability, is one of the practically important problems in the presence of environmental variables. In this study, we consider distributionally robust CC (DRCC) problem and propose a novel DRCC Bayesian optimization method for the case where the distribution of the environmental variables cannot be precisely specified. We show that the proposed method can find an arbitrary accurate solution with high probability in a finite number of trials, and confirm the usefulness of the proposed method through numerical experiments.
Dictionary learning consists of finding a sparse representation from noisy data and is a common way to encode data-driven prior knowledge on signals. Alternating minimization (AM) is standard for the underlying optimization, where gradient descent steps alternate with sparse coding procedures. The major drawback of this method is its prohibitive computational cost, making it unpractical on large real-world data sets. This work studies an approximate formulation of dictionary learning based on unrolling and compares it to alternating minimization to find the best trade-off between speed and precision. We analyze the asymptotic behavior and convergence rate of gradients estimates in both methods. We show that unrolling performs better on the support of the inner problem solution and during the first iterations. Finally, we apply unrolling on pattern learning in magnetoencephalography (MEG) with the help of a stochastic algorithm and compare the performance to a state-of-the-art method.
In this paper we provide a rigorous convergence analysis for the renowned Particle Swarm Optimization method using tools from stochastic calculus and the analysis of partial differential equations. Based on a time-continuous formulation of the particle dynamics as a system of stochastic differential equations, we establish the convergence to a global minimizer in two steps. First, we prove the consensus formation of the dynamics by analyzing the time-evolution of the variance of the particle distribution. Consecutively, we show that this consensus is close to a global minimizer by employing the asymptotic Laplace principle and a tractability condition on the energy landscape of the objective function. Our results allow for the usage of memory mechanisms, and hold for a rich class of objectives provided certain conditions of well-preparation of the hyperparameters and the initial datum are satisfied. To demonstrate the applicability of the method we propose an efficient and parallelizable implementation, which is tested in particular on a competitive and well-understood high-dimensional benchmark problem in machine learning.
Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the use of nonlocal vector calculus to prove well-posedeness, convergence, and stability of such schemes. Employing an FE method also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However, nonlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several challenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the intersections of FE mesh elements with a ball of radius $\delta$, where $\delta$ is the range of nonlocal interaction. Identifying and parameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature technique where the inner integration is performed using quadrature points distributed over the full ball, without regard for how it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed to all previously employed methods, our technique does not require element-by-element integration and fully circumvents the computation of element-ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear continuous FE approximations, focusing on the case where the element size h and the nonlocal radius $\delta$ are proportional, as is typical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is computed accurately, the proposed method is asymptotically compatible in the limit of $h \sim \delta \to 0$, featuring at least first-order convergence in L^2 for all dimensions, using both uniform and nonuniform grids.
The conventional approach to data-driven inversion framework is based on Gaussian statistics that presents serious difficulties, especially in the presence of outliers in the measurements. In this work, we present maximum likelihood estimators associated with generalized Gaussian distributions in the context of R\'enyi, Tsallis and Kaniadakis statistics. In this regard, we analytically analyse the outlier-resistance of each proposal through the so-called influence function. In this way, we formulate inverse problems by constructing objective functions linked to the maximum likelihood estimators. To demonstrate the robustness of the generalized methodologies, we consider an important geophysical inverse problem with high noisy data with spikes. The results reveal that the best data inversion performance occurs when the entropic index from each generalized statistic is associated with objective functions proportional to the inverse of the error amplitude. We argue that in such a limit the three approaches are resistant to outliers and are also equivalent, which suggests a lower computational cost for the inversion process due to the reduction of numerical simulations to be performed and the fast convergence of the optimization process.
We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.
We introduce a numerical technique for controlling the location and stability properties of Hopf bifurcations in dynamical systems. The algorithm consists of solving an optimization problem constrained by an extended system of nonlinear partial differential equations that characterizes Hopf bifurcation points. The flexibility and robustness of the method allows us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency with respect to a parameter of the system or the shape of the domain on which solutions are defined. Numerical applications are presented in systems arising from biology and fluid dynamics, such as the FitzHugh-Nagumo model, Ginzburg-Landau equation, Rayleigh-B\'enard convection problem, and Navier-Stokes equations, where the control of the location and oscillation frequency of periodic solutions is of high interest.
Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-$C^1$ are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are $C^1$ smooth almost everywhere, that is, at all vertices and across most edges, and in addition almost (i.e. approximately) $C^1$ smooth across all other edges. Thus, the splines form $H^2$-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-$C^1$ splines are described in an explicit B\'ezier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behavior.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.