亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs) to mitigate the inherent bias they are known to exhibit. DNNs are susceptible to inheriting bias with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes (e.g., demographic bias in facial recognition software used to arrest a suspect). We propose a robust optimization problem, which we demonstrate can improve fairness in several datasets, both synthetic and real-world, using an affine linear model. Leveraging second order information, we are able to find a solution to our optimization problem more efficiently than a purely first order method.

相關內容

We consider offline imitation learning (IL), which aims to mimic the expert's behavior from its demonstration without further interaction with the environment. One of the main challenges in offline IL is dealing with the limited support of expert demonstrations that cover only a small fraction of the state-action spaces. In this work, we consider offline IL, where expert demonstrations are limited but complemented by a larger set of sub-optimal demonstrations of lower expertise levels. Most of the existing offline IL methods developed for this setting are based on behavior cloning or distribution matching, where the aim is to match the occupancy distribution of the imitation policy with that of the expert policy. Such an approach often suffers from over-fitting, as expert demonstrations are limited to accurately represent any occupancy distribution. On the other hand, since sub-optimal sets are much larger, there is a high chance that the imitation policy is trained towards sub-optimal policies. In this paper, to address these issues, we propose a new approach based on inverse soft-Q learning, where a regularization term is added to the training objective, with the aim of aligning the learned rewards with a pre-assigned reward function that allocates higher weights to state-action pairs from expert demonstrations, and lower weights to those from lower expertise levels. On standard benchmarks, our inverse soft-Q learning significantly outperforms other offline IL baselines by a large margin.

Simultaneous Machine Translation (SiMT) generates translations while reading the source sentence, necessitating a policy to determine the optimal timing for reading and generating words. Despite the remarkable performance achieved by Large Language Models (LLM) across various NLP tasks, existing SiMT methods predominantly focus on conventional transformers, employing a single model to concurrently determine the policy and generate the translations. However, given the complexity of SiMT, it is challenging to effectively address both tasks with a single model. Therefore, there is a need to decouple the SiMT task into policy-decision and translation sub-tasks. We propose SiLLM, which delegates the two sub-tasks to separate agents, thereby incorporating LLM into SiMT. The policy-decision agent is managed by a conventional SiMT model, responsible for determining the translation policy. The translation agent, leveraging the capabilities of LLM, generates translation using the partial source sentence. The two agents collaborate to accomplish SiMT. To facilitate the application of token-level policies determined by conventional SiMT models to LLM, we propose a word-level policy adapted for LLM. Experiments on two datasets demonstrate that, with a small amount of data for fine-tuning LLM, SiLLM attains state-of-the-art performance.

This study addresses the challenge of inaccurate gradients in computing the empirical Fisher Information Matrix during neural network pruning. We introduce SWAP, a formulation of Entropic Wasserstein regression (EWR) for pruning, capitalizing on the geometric properties of the optimal transport problem. The ``swap'' of the commonly used linear regression with the EWR in optimization is analytically demonstrated to offer noise mitigation effects by incorporating neighborhood interpolation across data points with only marginal additional computational cost. The unique strength of SWAP is its intrinsic ability to balance noise reduction and covariance information preservation effectively. Extensive experiments performed on various networks and datasets show comparable performance of SWAP with state-of-the-art (SoTA) network pruning algorithms. Our proposed method outperforms the SoTA when the network size or the target sparsity is large, the gain is even larger with the existence of noisy gradients, possibly from noisy data, analog memory, or adversarial attacks. Notably, our proposed method achieves a gain of 6% improvement in accuracy and 8% improvement in testing loss for MobileNetV1 with less than one-fourth of the network parameters remaining.

Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.

Recent advances in deep learning research have shown remarkable achievements across many tasks in computer vision (CV) and natural language processing (NLP). At the intersection of CV and NLP is the problem of image captioning, where the related models' robustness against adversarial attacks has not been well studied. In this paper, we present a novel adversarial attack strategy, which we call AICAttack (Attention-based Image Captioning Attack), designed to attack image captioning models through subtle perturbations on images. Operating within a black-box attack scenario, our algorithm requires no access to the target model's architecture, parameters, or gradient information. We introduce an attention-based candidate selection mechanism that identifies the optimal pixels to attack, followed by Differential Evolution (DE) for perturbing pixels' RGB values. We demonstrate AICAttack's effectiveness through extensive experiments on benchmark datasets with multiple victim models. The experimental results demonstrate that our method surpasses current leading-edge techniques by effectively distributing the alignment and semantics of words in the output.

Machine learning techniques have outperformed numerous rule-based methods for decision-making in autonomous vehicles. Despite recent efforts, lane changing remains a major challenge, due to the complex driving scenarios and changeable social behaviors of surrounding vehicles. To help improve the state of the art, we propose to leveraging the emerging \underline{D}eep \underline{R}einforcement learning (DRL) approach for la\underline{NE} changing at the \underline{T}actical level. To this end, we present "DRNet", a novel and highly efficient DRL-based framework that enables a DRL agent to learn to drive by executing reasonable lane changing on simulated highways with an arbitrary number of lanes, and considering driving style of surrounding vehicles to make better decisions. Furthermore, to achieve a safe policy for decision-making, DRNet incorporates ideas from safety verification, the most important component of autonomous driving, to ensure that only safe actions are chosen at any time. The setting of our state representation and reward function enables the trained agent to take appropriate actions in a real-world-like simulator. Our DRL agent has the ability to learn the desired task without causing collisions and outperforms DDQN and other baseline models.

Recently, Foundation Models (FMs), with their extensive knowledge bases and complex architectures, have offered unique opportunities within the realm of recommender systems (RSs). In this paper, we attempt to thoroughly examine FM-based recommendation systems (FM4RecSys). We start by reviewing the research background of FM4RecSys. Then, we provide a systematic taxonomy of existing FM4RecSys research works, which can be divided into four different parts including data characteristics, representation learning, model type, and downstream tasks. Within each part, we review the key recent research developments, outlining the representative models and discussing their characteristics. Moreover, we elaborate on the open problems and opportunities of FM4RecSys aiming to shed light on future research directions in this area. In conclusion, we recap our findings and discuss the emerging trends in this field.

Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly understand control flow constructs and, in general, are capable of reasoning how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司