亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data-driven problem solving in many real-world applications involves analysis of time-dependent multivariate data, for which dimensionality reduction (DR) methods are often used to uncover the intrinsic structure and features of the data. However, DR is usually applied to a subset of data that is either single-time-point multivariate or univariate time-series, resulting in the need to manually examine and correlate the DR results out of different data subsets. When the number of dimensions is large either in terms of the number of time points or attributes, this manual task becomes too tedious and infeasible. In this paper, we present MulTiDR, a new DR framework that enables processing of time-dependent multivariate data as a whole to provide a comprehensive overview of the data. With the framework, we employ DR in two steps. When treating the instances, time points, and attributes of the data as a 3D array, the first DR step reduces the three axes of the array to two, and the second DR step visualizes the data in a lower-dimensional space. In addition, by coupling with a contrastive learning method and interactive visualizations, our framework enhances analysts' ability to interpret DR results. We demonstrate the effectiveness of our framework with four case studies using real-world datasets.

相關內容

降(jiang)維是將數(shu)據(ju)從高(gao)維空(kong)間(jian)轉換為低維空(kong)間(jian),以便低維表示保留原始數(shu)據(ju)的某些有意義的屬性,理想情(qing)況下接近其(qi)固(gu)有維。降(jiang)維在(zai)處理大(da)(da)量(liang)觀察和(he)/或大(da)(da)量(liang)變量(liang)的領域很常見,例(li)如信(xin)號處理,語(yu)音識(shi)別,神經信(xin)息(xi)(xi)學和(he)生物信(xin)息(xi)(xi)學。

We propose a new method for supervised learning with multiple sets of features ("views"). Cooperative learning combines the usual squared error loss of predictions with an "agreement" penalty to encourage the predictions from different data views to agree. By varying the weight of the agreement penalty, we get a continuum of solutions that include the well-known early and late fusion approaches. Cooperative learning chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set or cross-validation to estimate test set prediction error. One version of our fitting procedure is modular, where one can choose different fitting mechanisms (e.g. lasso, random forests, boosting, neural networks) appropriate for different data views. In the setting of cooperative regularized linear regression, the method combines the lasso penalty with the agreement penalty. The method can be especially powerful when the different data views share some underlying relationship in their signals that we aim to strengthen, while each view has its idiosyncratic noise that we aim to reduce. We illustrate the effectiveness of our proposed method on simulated and real data examples.

Self-supervision may boost model performance in downstream tasks. However, there is no principled way of selecting the self-supervised objectives that yield the most adaptable models. Here, we study this problem on daily time-series data generated from wearable sensors used to detect onset of influenza-like illness (ILI). We first show that using self-supervised learning to predict next-day time-series values allows us to learn rich representations which can be adapted to perform accurate ILI prediction. Second, we perform an empirical analysis of three different self-supervised objectives to assess their adaptability to ILI prediction. Our results show that predicting the next day's resting heart rate or time-in-bed during sleep provides better representations for ILI prediction. These findings add to previous work demonstrating the practical application of self-supervised learning from activity data to improve health predictions.

Many economic and scientific problems involve the analysis of high-dimensional functional time series, where the number of functional variables ($p$) diverges as the number of serially dependent observations ($n$) increases. In this paper, we present a novel functional factor model for high-dimensional functional time series that maintains and makes use of the functional and dynamic structure to achieve great dimension reduction and find the latent factor structure. To estimate the number of functional factors and the factor loadings, we propose a fully functional estimation procedure based on an eigenanalysis for a nonnegative definite matrix. Our proposal involves a weight matrix to improve the estimation efficiency and tackle the issue of heterogeneity, the rationality of which is illustrated by formulating the estimation from a novel regression perspective. Asymptotic properties of the proposed method are studied when $p$ diverges at some polynomial rate as $n$ increases. To provide a parsimonious model and enhance interpretability for near-zero factor loadings, we impose sparsity assumptions on the factor loading space and then develop a regularized estimation procedure with theoretical guarantees when $p$ grows exponentially fast relative to $n.$ Finally, we demonstrate that our proposed estimators significantly outperform the competing methods through both simulations and applications to a U.K. temperature dataset and a Japanese mortality dataset.

The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.

Heterogeneous tabular data are the most commonly used form of data and are essential for numerous critical and computationally demanding applications. On homogeneous data sets, deep neural networks have repeatedly shown excellent performance and have therefore been widely adopted. However, their application to modeling tabular data (inference or generation) remains highly challenging. This work provides an overview of state-of-the-art deep learning methods for tabular data. We start by categorizing them into three groups: data transformations, specialized architectures, and regularization models. We then provide a comprehensive overview of the main approaches in each group. A discussion of deep learning approaches for generating tabular data is complemented by strategies for explaining deep models on tabular data. Our primary contribution is to address the main research streams and existing methodologies in this area, while highlighting relevant challenges and open research questions. To the best of our knowledge, this is the first in-depth look at deep learning approaches for tabular data. This work can serve as a valuable starting point and guide for researchers and practitioners interested in deep learning with tabular data.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

Accelerated by the tremendous increase in Internet bandwidth and storage space, video data has been generated, published and spread explosively, becoming an indispensable part of today's big data. In this paper, we focus on reviewing two lines of research aiming to stimulate the comprehension of videos with deep learning: video classification and video captioning. While video classification concentrates on automatically labeling video clips based on their semantic contents like human actions or complex events, video captioning attempts to generate a complete and natural sentence, enriching the single label as in video classification, to capture the most informative dynamics in videos. In addition, we also provide a review of popular benchmarks and competitions, which are critical for evaluating the technical progress of this vibrant field.

With the spreading prevalence of Big Data, many advances have recently been made in this field. Frameworks such as Apache Hadoop and Apache Spark have gained a lot of traction over the past decades and have become massively popular, especially in industries. It is becoming increasingly evident that effective big data analysis is key to solving artificial intelligence problems. Thus, a multi-algorithm library was implemented in the Spark framework, called MLlib. While this library supports multiple machine learning algorithms, there is still scope to use the Spark setup efficiently for highly time-intensive and computationally expensive procedures like deep learning. In this paper, we propose a novel framework that combines the distributive computational abilities of Apache Spark and the advanced machine learning architecture of a deep multi-layer perceptron (MLP), using the popular concept of Cascade Learning. We conduct empirical analysis of our framework on two real world datasets. The results are encouraging and corroborate our proposed framework, in turn proving that it is an improvement over traditional big data analysis methods that use either Spark or Deep learning as individual elements.

北京阿比特科技有限公司