亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tests executed by human testers are still widespread in practice and fill the gap left by limitations of automated approaches. Among the human-centered approaches, exploratory testing is the de facto approach in agile teams. Although it is focused on the expertise and creativity of the tester, the activity of exploratory testing may benefit from support provided by an automated agent that interacts with the human testers. This paper presents a chatbot, called BotExpTest, designed to support testers while performing exploratory tests of software applications. We implemented BotExpTest on top of the instant messaging social platform Discord; this version includes functionalities to report bugs and issues, time management of test sessions, guidelines for app testing, and presentation of exploratory testing strategies. To assess BotExpTest, we conducted a user study with six software engineering professionals. They carried out two sessions performing exploratory tests along with BotExpTest. Participants were capable of revealing bugs and found the experience to interact with the chatbot positive. Preliminary analyses indicate that chatbot-enabled exploratory testing may be as effective as similar approaches and help testers to uncover different bugs. Bots are shown to be valuable resources for Software Engineering, and initiatives like BotExpTest may help to improve the effectiveness of testing activities like exploratory testing.

相關內容

Chatbot,聊天機器人。 chatbot是場交互革命,也是一個多技術融合的平臺。上圖給出了構建一個chatbot需要具備的組件,簡單地說chatbot = NLU(Natural Language Understanding) + NLG(Natural Language Generation)。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The recent deployment of multi-agent systems in a wide range of scenarios has enabled the solution of learning problems in a distributed fashion. In this context, agents are tasked with collecting local data and then cooperatively train a model, without directly sharing the data. While distributed learning offers the advantage of preserving agents' privacy, it also poses several challenges in terms of designing and analyzing suitable algorithms. This work focuses specifically on the following challenges motivated by practical implementation: (i) online learning, where the local data change over time; (ii) asynchronous agent computations; (iii) unreliable and limited communications; and (iv) inexact local computations. To tackle these challenges, we introduce the Distributed Operator Theoretical (DOT) version of the Alternating Direction Method of Multipliers (ADMM), which we call the DOT-ADMM Algorithm. We prove that it converges with a linear rate for a large class of convex learning problems (e.g., linear and logistic regression problems) toward a bounded neighborhood of the optimal time-varying solution, and characterize how the neighborhood depends on~$\text{(i)--(iv)}$. We corroborate the theoretical analysis with numerical simulations comparing the DOT-ADMM Algorithm with other state-of-the-art algorithms, showing that only the proposed algorithm exhibits robustness to (i)--(iv).

Collective perception is a foundational problem in swarm robotics, in which the swarm must reach consensus on a coherent representation of the environment. An important variant of collective perception casts it as a best-of-$n$ decision-making process, in which the swarm must identify the most likely representation out of a set of alternatives. Past work on this variant primarily focused on characterizing how different algorithms navigate the speed-vs-accuracy tradeoff in a scenario where the swarm must decide on the most frequent environmental feature. Crucially, past work on best-of-$n$ decision-making assumes the robot sensors to be perfect (noise- and fault-less), limiting the real-world applicability of these algorithms. In this paper, we derive from first principles an optimal, probabilistic framework for minimalistic swarm robots equipped with flawed sensors. Then, we validate our approach in a scenario where the swarm collectively decides the frequency of a certain environmental feature. We study the speed and accuracy of the decision-making process with respect to several parameters of interest. Our approach can provide timely and accurate frequency estimates even in presence of severe sensory noise.

The capabilities and use cases of automatic natural language processing (NLP) have grown significantly over the last few years. While much work has been devoted to understanding how humans deal with discourse connectives, this phenomenon is understudied in computational systems. Therefore, it is important to put NLP models under the microscope and examine whether they can adequately comprehend, process, and reason within the complexity of natural language. In this chapter, we introduce the main mechanisms behind automatic sentence processing systems step by step and then focus on evaluating discourse connective processing. We assess nine popular systems in their ability to understand English discourse connectives and analyze how context and language understanding tasks affect their connective comprehension. The results show that NLP systems do not process all discourse connectives equally well and that the computational processing complexity of different connective kinds is not always consistently in line with the presumed complexity order found in human processing. In addition, while humans are more inclined to be influenced during the reading procedure but not necessarily in the final comprehension performance, discourse connectives have a significant impact on the final accuracy of NLP systems. The richer knowledge of connectives a system learns, the more negative effect inappropriate connectives have on it. This suggests that the correct explicitation of discourse connectives is important for computational natural language processing.

Current knowledge distillation approaches in semantic segmentation tend to adopt a holistic approach that treats all spatial locations equally. However, for dense prediction, students' predictions on edge regions are highly uncertain due to contextual information leakage, requiring higher spatial sensitivity knowledge than the body regions. To address this challenge, this paper proposes a novel approach called boundary-privileged knowledge distillation (BPKD). BPKD distills the knowledge of the teacher model's body and edges separately to the compact student model. Specifically, we employ two distinct loss functions: (i) edge loss, which aims to distinguish between ambiguous classes at the pixel level in edge regions; (ii) body loss, which utilizes shape constraints and selectively attends to the inner-semantic regions. Our experiments demonstrate that the proposed BPKD method provides extensive refinements and aggregation for edge and body regions. Additionally, the method achieves state-of-the-art distillation performance for semantic segmentation on three popular benchmark datasets, highlighting its effectiveness and generalization ability. BPKD shows consistent improvements across a diverse array of lightweight segmentation structures, including both CNNs and transformers, underscoring its architecture-agnostic adaptability. The code is available at \url{//github.com/AkideLiu/BPKD}.

Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.

The assessment of the well-being of the peripheral auditory nerve system in individuals experiencing hearing impairment is conducted through auditory brainstem response (ABR) testing. Audiologists assess and document the results of the ABR test. They interpret the findings and assign labels to them using reference-based markers like peak latency, waveform morphology, amplitude, and other relevant factors. Inaccurate assessment of ABR tests may lead to incorrect judgments regarding the integrity of the auditory nerve system; therefore, proper Hearing Loss (HL) diagnosis and analysis are essential. To identify and assess ABR automation while decreasing the possibility of human error, machine learning methods, notably deep learning, may be an appropriate option. To address these issues, this study proposed deep-learning models using the transfer-learning (TL) approach to extract features from ABR testing and diagnose HL using support vector machines (SVM). Pre-trained convolutional neural network (CNN) architectures like AlexNet, DenseNet, GoogleNet, InceptionResNetV2, InceptionV3, MobileNetV2, NASNetMobile, ResNet18, ResNet50, ResNet101, ShuffleNet, and SqueezeNet are used to extract features from the collected ABR reported images dataset in the proposed model. It has been decided to use six measures accuracy, precision, recall, geometric mean (GM), standard deviation (SD), and area under the ROC curve to measure the effectiveness of the proposed model. According to experimental findings, the ShuffleNet and ResNet50 models' TL is effective for ABR to diagnose HL using an SVM classifier, with a high accuracy rate of 95% when using the 5-fold cross-validation method.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司