亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is often useful to have polynomial upper or lower bounds on a one-dimensional function that are valid over a finite interval, called a trust region. A classical way to produce polynomial bounds of degree $k$ involves bounding the range of the $k$th derivative over the trust region, but this produces suboptimal bounds. We improve on this by deriving sharp polynomial upper and lower bounds for a wide variety of one-dimensional functions. We further show that sharp bounds of degree $k$ are at least $k+1$ times tighter than those produced by the classical method, asymptotically as the width of the trust region approaches zero. We discuss how these sharp bounds can be used in majorization-minimization optimization, among other applications.

相關內容

To exploit the expressivity of being able to refer to the type of types, such as for large elimination, dependent type systems will either employ a universe hierarchy or else contend with an inconsistent type-in-type rule. However, these are not be the only possible options. Taking inspiration from Stratified System F, we introduce Stratified Type Theory (StraTT), where rather than stratifying universes by levels, we stratify typing judgements and restrict the domain of dependent function types to some fixed level strictly lower than that of the overall type. Even in the presence of type-in-type, this restriction suffices to enforce consistency of the system. We explore the expressivity of several extensions atop this design. First, the subsystem subStraTT employs McBride's crude-but-effective stratification (also known as displacement) as a simple form of level polymorphism where top-level definitions can be displaced uniformly to any higher level as needed, which is valid due to level cumulativity and plays well with stratified judgements. Second, to recover some expressivity lost due to the restriction on dependent function domains, the full StraTT system includes a separate nondependent function type with floating domains, whose level instead matches that of the overall type. Finally, we have implemented a prototype type checker for StraTT extended with datatypes along with a small type checked core library. While it's possible to show that the subsystem is consistent, showing consistency for the full system with floating nondependent functions remains open. Nevertheless, we believe that the full system is also consistent and have mechanized a syntactic proof of subject reduction. Furthermore, we use our implementation to investigate various well-known type-theoretic type-in-type paradoxes. These examples all fail to type check in expected ways as evidence towards consistency.

We develop a general and practical framework to address the problem of the optimal design of dynamic fee mechanisms for multiple blockchain resources. Our framework allows to compute policies that optimally trade-off between adjusting resource prices to handle persistent demand shifts versus being robust to local noise in the observed block demand. In the general case with more than one resource, our optimal policies correctly handle cross-effects (complementarity and substitutability) in resource demands. We also show how these cross-effects can be used to inform resource design, i.e. combining resources into bundles that have low demand-side cross-effects can yield simpler and more efficient price-update rules. Our framework is also practical, we demonstrate how it can be used to refine or inform the design of heuristic fee update rules such as EIP-1559 or EIP-4844 with two case studies. We then estimate a uni-dimensional version of our model using real market data from the Ethereum blockchain and empirically compare the performance of our optimal policies to EIP-1559.

Virtual element methods (VEMs) without extrinsic stabilization in arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension. The key is to construct local $H(\textrm{div})$-conforming macro finite element spaces such that the associated $L^2$ projection of the gradient of virtual element functions is computable, and the $L^2$ projector has a uniform lower bound on the gradient of virtual element function spaces in $L^2$ norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.

Early advances in the field of quantum computing have provided new opportunities to tackle intricate problems in areas as diverse as mathematics, physics, or healthcare. However, the technology required to construct such systems where different pieces of quantum and classical software collaborate is currently lacking. For this reason, significant advancements in quantum service-oriented computing are necessary to enable developers to create and operate quantum services and microservices comparable to their classical counterparts. Therefore, the core objective of this work is to establish the necessary technological infrastructure that enables the application of the benefits and lessons learned from service-oriented computing to the domain of quantum software engineering. To this end, we propose a pipeline for the continuous deployment of services. Additionally, we have validated the proposal by making use of a modification of the OpenAPI specification, the GitHub Actions, and AWS.

Stablecoins, which are primarily intended to function as a global reserve of value are insubstantial in their design and present many failure points. The primary mechanism to enable these coins to hold on to a fixed value is by backing them with collateral. Fiat collateralized stablecoins require users to trust a centralized entity, which breaks the total concept of decentralization. Crypto collateralized stablecoins have issues involving high collateral requirements and introduces risks of auto-liquidation. In this paper we aim to propose an alternative architecture for the creation of a functional and secure stablecoin.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

北京阿比特科技有限公司