亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

If the video has long been mentioned as a widespread visualization form, the animation sequence in the video is mentioned as storytelling for people. Producing an animation requires intensive human labor from skilled professional artists to obtain plausible animation in both content and motion direction, incredibly for animations with complex content, multiple moving objects, and dense movement. This paper presents an interactive framework to generate new sequences according to the users' preference on the starting frame. The critical contrast of our approach versus prior work and existing commercial applications is that novel sequences with arbitrary starting frame are produced by our system with a consistent degree in both content and motion direction. To achieve this effectively, we first learn the feature correlation on the frameset of the given video through a proposed network called RSFNet. Then, we develop a novel path-finding algorithm, SDPF, which formulates the knowledge of motion directions of the source video to estimate the smooth and plausible sequences. The extensive experiments show that our framework can produce new animations on the cartoon and natural scenes and advance prior works and commercial applications to enable users to obtain more predictable results.

相關內容

Due to the recent success of diffusion models, text-to-image generation is becoming increasingly popular and achieves a wide range of applications. Among them, text-to-image editing, or continuous text-to-image generation, attracts lots of attention and can potentially improve the quality of generated images. It's common to see that users may want to slightly edit the generated image by making minor modifications to their input textual descriptions for several rounds of diffusion inference. However, such an image editing process suffers from the low inference efficiency of many existing diffusion models even using GPU accelerators. To solve this problem, we introduce Fast Image Semantically Edit (FISEdit), a cached-enabled sparse diffusion model inference engine for efficient text-to-image editing. The key intuition behind our approach is to utilize the semantic mapping between the minor modifications on the input text and the affected regions on the output image. For each text editing step, FISEdit can automatically identify the affected image regions and utilize the cached unchanged regions' feature map to accelerate the inference process. Extensive empirical results show that FISEdit can be $3.4\times$ and $4.4\times$ faster than existing methods on NVIDIA TITAN RTX and A100 GPUs respectively, and even generates more satisfactory images.

Diffusion models are a new class of generative models, and have dramatically promoted image generation with unprecedented quality and diversity. Existing diffusion models mainly try to reconstruct input image from a corrupted one with a pixel-wise or feature-wise constraint along spatial axes. However, such point-based reconstruction may fail to make each predicted pixel/feature fully preserve its neighborhood context, impairing diffusion-based image synthesis. As a powerful source of automatic supervisory signal, context has been well studied for learning representations. Inspired by this, we for the first time propose ConPreDiff to improve diffusion-based image synthesis with context prediction. We explicitly reinforce each point to predict its neighborhood context (i.e., multi-stride features/tokens/pixels) with a context decoder at the end of diffusion denoising blocks in training stage, and remove the decoder for inference. In this way, each point can better reconstruct itself by preserving its semantic connections with neighborhood context. This new paradigm of ConPreDiff can generalize to arbitrary discrete and continuous diffusion backbones without introducing extra parameters in sampling procedure. Extensive experiments are conducted on unconditional image generation, text-to-image generation and image inpainting tasks. Our ConPreDiff consistently outperforms previous methods and achieves a new SOTA text-to-image generation results on MS-COCO, with a zero-shot FID score of 6.21.

Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a Gaussian-Mixture-Model based Transformer which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (i.e., TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer. Code is available at \url{//github.com/huangmozhi9527/GMMFormer}.

Sample efficiency is crucial in optimization, particularly in black-box scenarios characterized by expensive evaluations and zeroth-order feedback. When computing resources are plentiful, Bayesian optimization is often favored over evolution strategies. In this paper, we introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework, that effectively rivals the leading Bayesian optimization method in tasks with dimensions at the upper limit of Bayesian capability. Specifically, we first build the framework InvIGO that fully incorporates historical information while retaining the full invariant and computational complexity. We then exemplify InvIGO on multi-dimensional Gaussian, which gives an invariant and scalable optimizer SynCMA . The theoretical behavior and advantages of our algorithm over other Gaussian-based evolution strategies are further analyzed. Finally, We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies on various high dimension tasks, in cluding Mujoco locomotion tasks, rover planning task and synthetic functions. In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency, showing the underdeveloped potential of property oriented evolution strategies.

Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.

Learned video compression methods have gained a variety of interest in the video coding community since they have matched or even exceeded the rate-distortion (RD) performance of traditional video codecs. However, many current learning-based methods are dedicated to utilizing short-range temporal information, thus limiting their performance. In this paper, we focus on exploiting the unique characteristics of video content and further exploring temporal information to enhance compression performance. Specifically, for long-range temporal information exploitation, we propose temporal prior that can update continuously within the group of pictures (GOP) during inference. In that case temporal prior contains valuable temporal information of all decoded images within the current GOP. As for short-range temporal information, we propose a progressive guided motion compensation to achieve robust and effective compensation. In detail, we design a hierarchical structure to achieve multi-scale compensation. More importantly, we use optical flow guidance to generate pixel offsets between feature maps at each scale, and the compensation results at each scale will be used to guide the following scale's compensation. Sufficient experimental results demonstrate that our method can obtain better RD performance than state-of-the-art video compression approaches. The code is publicly available on: //github.com/Huairui/LSTVC.

Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.

北京阿比特科技有限公司